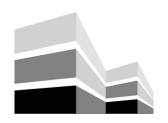


Общество с ограниченной ответственностью «Институт «ПРОМИНВЕСТПРОЕКТ»

308000 Российская Федерация, Белгородская область, г. Белгород, пр. Гражданский 36, оф.11 тел./факс (4722) 40-26-59, e-mail: info@prominvestproject.ru

АКЦИОНЕРНОЕ ОБЩЕСТВО «МЕТАЛЛУРГИЧЕСКИЙ ЗАВОД БАЛАКОВО»

РЕЛЬСОБАЛОЧНЫЙ ЦЕХ АО «МЗ БАЛАКОВО». КОМПЛЕКС ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА


ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Перечень мероприятий по охране окружающей среды

ЧАСТЬ 3

 $9035.1 - \Pi MOOC 3$

TOM 8.3

Общество с ограниченной ответственностью «Институт «ПРОМИНВЕСТПРОЕКТ»

308000 Российская Федерация, Белгородская область, г. Белгород, пр. Гражданский 36, оф.11 тел./факс (4722) 40-26-59, e-mail: info@prominvestproject.ru

АКЦИОНЕРНОЕ ОБЩЕСТВО «МЕТАЛЛУРГИЧЕСКИЙ ЗАВОД БАЛАКОВО»

РЕЛЬСОБАЛОЧНЫЙ ЦЕХ АО «МЗ БАЛАКОВО». КОМПЛЕКС ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 8. Перечень мероприятий по охране окружающей среды

ЧАСТЬ 3

9035.1 – Π MOOC 3

TOM 8.3

Директор И. Н. Лысенко

Главный инженер проекта В. М. Колюпанов

нв. № подл

2023

Содержание тома 8.3

Обозначение	Наименование	Примечание
9035.1 – ПМООС 3	Содержание тома	2
9035.1 - СП	Состав проектной документации	3
9035.1 - ПГ	Подтверждение ГИП	4
9035.1 - ИС	Сведения об интеллектуальной собственности	5
9035.1 – ПМООС 3	Текстовая часть	6

и дата Взам. инв. №										
Подпись	Изм.	Кол. уч.	Лист	№ док.	Подпись	Дата	9035.1-ПМО	OC 3		
		ботал	Исаен	•		07.23		Стадия	Лист	Листов
одл	Прове		Терец	ценко		07.23		П	1	1
Инв. № подл	Нач. о		Порох			07.23	Содержание тома			
HB.			Порох			07.23			ОО «Инст	
Z	ГИП		Колюг	танов		07.23		«ПРОМ	ИНВЕСТ	ПРОЕКТ»

Состав проектной документации

Состав проектной документации приведен в томе 14.

Взам. инв. №										
Подпись и дата				ı	ı					
현							9035.1 - C	п		
	Изм.	Кол. уч.	Лист	№ док.	Подпись	Дата	7033.1 - C	11		
F		ботал	Колю	-		10.23		Стадия	Лист	Листов
№подл								П	1	1
Инв. №							Состав проекта		ОО «Инс ИНВЕСТ	гитут ПРОЕКТ»

Проектная документация разработана в соответствии с градостроительным планом земельного участка, заданием на проектирование, градостроительным регламентом, документами об использовании земельного участка для строительства, техническими регламентами, в том числе устанавливающими требования по обеспечению безопасной эксплуатации зданий, строений, сооружений и безопасного использования прилегающих к ним территорий, и с соблюдением технических условий

Главный инженер проекта		В. М. Колюпанов
----------------------------	--	-----------------

Взам. инв. №										
ись и дата										
Подпись							00074	-		
-							9035.1 - П	.1		
	Изм.	Кол. уч.	Лист	№ док.	Подпись	Дата				
_	ГИП		Колю	танов		10.23		Стадия	Лист	Листов
о Д								П	1	1
Инв. Nº подл							Подтверждение ГИП	О(«ПРОМ	ОО «Инст ИНВЕСТ	гитут ПРОЕКТ»

СВЕДЕНИЯ ОБ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

Настоящая Проектная документация разработана в соответствии с «Положением о составе разделов проектной документации и требованиях к их содержанию», принятым Постановлением Правительства Российской Федерации № 87 от 16 февраля 2008 г. и вступившим в силу с 01 июля 2008 г.

Информация, изложенная в настоящей проектной документации, носит конфиденциальный характер.

Настоящие материалы являются результатом интеллектуальной деятельности ООО «Институт «ПРОМИНВЕСТПРОЕКТ». В связи с этим они не могут быть полностью или частично воспроизведены, тиражированы, распространены или переданы для использования третьим лицам без письменного согласия ООО «Институт «ПРОМИНВЕСТПРОЕКТ». Данное требование соответствует Гражданскому Кодексу РФ.

Взам. инв. №										
Подпись и дата							9035.1 - И	<u>С</u>		
		Кол. уч.			Подпись					
5	ГИП		Колюг	анов		10.23		Стадия	Лист	Листов
№подл							Сведения	П	1	1
Инв. №							об интеллектуальной собственности		ОО «Инст ИНВЕСТ	титут ПРОЕКТ»

Содержание

Содержание тома 8	.3		2
Состав проектной д	окументации		4
СВЕДЕНИЯ	ОБ	ИНТЕЛЛЕКТУАЛЬН	ОЙ 6
СОБСТВЕННОСТИ			
Приложение 12 Рас	чет количеств	ва загрязняющих вещес	ств, 229
поступающих в атмосфер	у в период стр	ооительства	
Приложение 13 Рас	чет количеств	ва загрязняющих вещес	ств, 341
поступающих в атмосфер	у в период экс	сплуатации	
Приложение 14 Рас	чет шума на п	ериод эксплуатации	341
Приложение 15 Рас	чет шума на п	ериод строительства	364
Приложение 16 Ра	счет объемов	образования отходов	на 379
период эксплуатации			
Приложение 17 Ра	счет объемов	образования отходов	на 384
период строительства			

Инв. № подл Подпись и дата Взам. инв. № Взам. инв. №

Приложение 12 Расчет количества загрязняющих веществ, поступающих в атмосферу в период строительства

1.1 Стоянка топливозаправщиков (ИЗА №6501)

Источниками выделений загрязняющих веществ являются двигатели автомобилей в период прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Согласовано

읟

Подпись и дата

код	Загрязняющее вещество наименование	Максимально разовый выброс, г/с	Годовой выброс, т/год
301	Азота диоксид (Азот (IV) оксид)	0,00256	0,002253
304	Азот (II) оксид (Азота оксид)	0,0004157	0,0003659
328	Углерод (Сажа)	0,000165	0,0001422
330	Сера диоксид (Ангидрид сернистый)	0,0005147	0,0004592
337	Углерод оксид	0,0077333	0,0066205
2732	Керосин	0,0026833	0,0023248

Расчет выполнен для автостоянки открытого типа, не оборудованной средствами подогрева. Пробег автотранспорта при въезде составляет 0,2 км, при выезде -0,2 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -1 мин, при возврате на неё -1 мин. Количество дней для расчётного периода: теплого -84, переходного -30, хололного -195.

табл	Иса ице 1		е данні	ые для	расчета	выделений	і загрязняющи	х веществ,	приведены	В
Табл	ица 1	.1.2 -	Исходн	ые дан	ные для	расчета				
	•		, ,	. ,	, ,					
						90		OC 3		Ли

	Turantanaucrontuoro	М	аксимальное к автомоби		ГВО	Экок	Одно
Наименование	Тип автотранспортного средства	всего			• •	онтр оль	врем енно сть
	Грузовой, г/п от 8 до 16 т, дизель	1	1	1	1	-	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы i-го вещества одним автомобилем k-й группы в день при выезде с территории или помещения стоянки M_{lik} и возврате M_{2ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M}_{lik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{Lik} \cdot \mathbf{L}_{l} + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XXl}, z \tag{1.1.1}$$

$$\mathbf{M}_{2ik} = \mathbf{m}_{Lik} \cdot \mathbf{L}_2 + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XX2}, z \tag{1.1.2}$$

где $m_{\Pi P ik}$ — удельный выброс i-го вещества при прогреве двигателя автомобиля k-й группы, 2/мин;

 $m_{L\ ik}$ - пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью $10\text{-}20\ \text{км/час}$, $z/\kappa m$;

 $m_{XX\ ik}$ - удельный выброс i-го вещества при работе двигателя автомобиля k-й группы на холостом ходу, z/мин;

 $t_{\Pi P}$ - время прогрева двигателя, *мин*;

 L_1, L_2 - пробег автомобиля по территории стоянки, κM ;

 t_{XXI} , t_{XXI} - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё, *мин*.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями снижаются, поэтому должны пересчитываться по формулам (1.1.3 и 1.1.4):

$$\mathbf{m'}_{\Pi P \ ik} = \mathbf{m}_{\Pi P \ ik} \cdot \mathbf{K}_i, \ \mathcal{E}/\mathbf{M}\mathbf{U}\mathbf{H}$$
 (1.1.3)

$$\mathbf{m''}_{XX\,ik} = \mathbf{m}_{XX\,ik} \cdot \mathbf{K}_i, \, \mathcal{E}/\mathbf{M}\mathbf{U}\mathbf{H}$$
 (1.1.4)

где K_i — коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля.

Валовый выброс i-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле (1.1.5):

$$\mathbf{M}_{j}^{i} = \sum_{k=1}^{k} \alpha_{e} (\mathbf{M}_{1ik} + \mathbf{M}_{2ik}) \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, m/200$$
 (1.1.5)

где α_{6} - коэффициент выпуска (выезда);

Изм. Кол.уч. Лист № док. Подпись Дата

 N_k — количество автомобилей k-й группы на территории или в помещении стоянки за расчетный период;

 D_P - – количество дней работы в расчетном периоде (холодном, теплом, переходном);

j – период года (T - теплый, Π - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Согласовано

읟

Лист

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ учитывается только для выезжающих автомобилей, хранящихся на открытых и закрытых не отапливаемых стоянках.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.6):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathrm{T}}_{i} + \mathbf{M}^{\mathrm{\Pi}}_{i} + \mathbf{M}^{\mathrm{X}}_{i}, \, m/200$$
 (1.1.6)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.7):

$$G_i = \sum_{k=1}^{k} (\boldsymbol{M}_{1ik} \cdot \boldsymbol{N'}_k + \boldsymbol{M}_{2ik} \cdot \boldsymbol{N''}_k) / 3600, \varepsilon/ce\kappa$$
 (1.1.7)

где N'_k , N''_k – количество автомобилей k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) автомобилей.

Из полученных значений G_i выбирается максимальное с учетом одновременности движения автомобилей разных групп.

Удельные выбросы загрязняющих веществ при прогреве двигателей, пробеговые, на холостом ходу, коэффициент снижения выбросов при проведении экологического контроля K_i , а так же коэффициент изменения выбросов при движении по пандусу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Согласовано

Взам. инв. №

Подпись и дата

		Про	грев <i>,</i> г/	мин	Пр	обег <i>,</i> г,	/ĸM	Холос	Эко-
Тип	22502212101100 001100500							той	контр
Тип	Загрязняющее вещество	Т	П	Х	Т	П	Х	ход,	оль,
								г/мин	Ki
Грузс	вой, г/п от 8 до 16 т, дизель								
	Азота диоксид (Азот (IV) оксид)	0,408	0,616	0,616	2,72	2,72	2,72	0,368	1
	Азот (II) оксид (Азота оксид)	0,066	0,1	0,1	0,442	0,442	0,442	0,059	1
		3						8	
	Углерод (Сажа)	0,019	0,034	0,038	0,2	0,27	0,3	0,019	0,8
			2						
	Сера диоксид (Ангидрид	0,1	0,108	0,12	0,475	0,531	0,59	0,1	0,95
	сернистый)								
	Углерод оксид	1,34	1,8	2	4,9	5,31	5,9	0,84	0,9
	Керосин	0,59	0,639	0,71	0,7	0,72	0,8	0,42	0,9

	vnau			рогрева дено в т		тателей в зависимости от температуры воздуха и услови	й
						ева двигателей, мин	
						9035.1 – ПМООС 3	Лист
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата		4

 $9035.1 - \Pi MOOC 3$

	В	ремя г	трогре	ва при	1 темп	ератур	e
			В03	духа, г	мин		
Тип автотранспортного средства	выш е +5°C	+5 -5°C	-5 -10°C	-10 -15°C	-15 -20°C	-20 -25°C	ниже -25°C
Грузовой, г/п от 8 до 16 т, дизель	4	6	12	20	25	30	30

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

автотопливозаправщик АТЗ-10

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\mathrm{T}}_{2} = 2,72 \cdot 0,2 + 0,368 \cdot 1 = 0,912 \, \epsilon;$

 $M^{T}_{I} = 0.408 \cdot 4 + 2.72 \cdot 0.2 + 0.368 \cdot 1 = 2.544 \, \varepsilon;$

```
M^{T}_{301} = (2.544 + 0.912) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.0002903 \text{ m/zod};
G^{T}_{30I} = (2.544 \cdot 1 + 0.912 \cdot 1) / 3600 = 0.00096 \ z/c;
M^{\Pi}_{I} = 0.616 \cdot 6 + 2.72 \cdot 0.2 + 0.368 \cdot 1 = 4.608 \ \varepsilon;
M^{\Pi}_2 = 2,72 \cdot 0,2 + 0,368 \cdot 1 = 0,912 c;
M^{\Pi}_{301} = (4,608 + 0.912) \cdot 30 \cdot 1 \cdot 10^{-6} = 0.0001656 \text{ m/zod};
\mathbf{G}^{\Pi}_{30I} = (4,608 \cdot 1 + 0.912 \cdot 1) / 3600 = 0.0015333 \, \epsilon/c;
M^{X}_{I} = 0.616 \cdot 12 + 2.72 \cdot 0.2 + 0.368 \cdot 1 = 8.304 \, \epsilon;
M^{X}_{2} = 2.72 \cdot 0.2 + 0.368 \cdot 1 = 0.912 \,\varepsilon;
M^{X}_{301} = (8,304 + 0.912) \cdot 195 \cdot 1 \cdot 10^{-6} = 0.0017971 \text{ m/zod};
G^{X}_{301} = (8,304 \cdot 1 + 0.912 \cdot 1) / 3600 = 0.00256 \, \epsilon/c;
M = 0.0002903 + 0.0001656 + 0.0017971 = 0.002253 \text{ m/zod};
G = \max\{0,00096; 0,0015333; \underline{0,00256}\} = 0,00256 \ c/c.
M^{T}_{I} = 0.0663 \cdot 4 + 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 0.4134 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 0.1482 \, \varepsilon;
M^{\mathrm{T}}_{304} = (0.4134 + 0.1482) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.0000472 \, \text{m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.4134 \cdot 1 + 0.1482 \cdot 1) / 3600 = 0.000156 \, \epsilon/c;
M^{\Pi}_{I} = 0.1 \cdot 6 + 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 0.7482 \ \epsilon;
M^{\Pi_2} = 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 0.1482 \, \epsilon;
M^{\Pi}_{304} = (0.7482 + 0.1482) \cdot 30 \cdot 1 \cdot 10^{-6} = 0.0000269 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.7482 \cdot 1 + 0.1482 \cdot 1) / 3600 = 0.000249 \ \epsilon/c;
\mathbf{M}^{X}_{I} = 0.1 \cdot 12 + 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 1.3482 \ \varepsilon
\mathbf{M}^{X}_{2} = 0.442 \cdot 0.2 + 0.0598 \cdot 1 = 0.1482 \, \varepsilon;
M^{X}_{304} = (1,3482 + 0,1482) \cdot 195 \cdot 1 \cdot 10^{-6} = 0,0002918 \text{ m/zod};
G^{X}_{304} = (1,3482 \cdot 1 + 0,1482 \cdot 1) / 3600 = 0,0004157 \ \epsilon/c;
M = 0.0000472 + 0.0000269 + 0.0002918 = 0.0003659 \text{ m/zod};
G = \max\{0.000156; 0.000249; 0.0004157\} = 0.0004157 \ z/c.
M^{T}_{I} = 0.019 \cdot 4 + 0.2 \cdot 0.2 + 0.019 \cdot 1 = 0.135 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 1 = 0.059 \, \varepsilon;
M^{T}_{328} = (0.135 + 0.059) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.0000163 \text{ m/200};
G^{T}_{328} = (0.135 \cdot 1 + 0.059 \cdot 1) / 3600 = 0.0000539 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

```
M^{\Pi}_{328} = (0.2782 + 0.059) \cdot 30 \cdot 1 \cdot 10^{-6} = 0.0000101 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (0.2782 \cdot 1 + 0.059 \cdot 1) / 3600 = 0.0000937 \ z/c;
M^{X}_{I} = 0.038 \cdot 12 + 0.3 \cdot 0.2 + 0.019 \cdot 1 = 0.535 \ \epsilon;
M^{X}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 1 = 0.059 \ \varepsilon;
M^{X}_{328} = (0.535 + 0.059) \cdot 195 \cdot 1 \cdot 10^{-6} = 0.0001158 \text{ m/zod};
G^{X}_{328} = (0.535 \cdot 1 + 0.059 \cdot 1) / 3600 = 0.000165 \ \epsilon/c;
M = 0.0000163 + 0.0000101 + 0.0001158 = 0.0001422 \text{ m/zod};
G = \max\{0.0000539; 0.0000937; 0.000165\} = 0.000165 \ z/c.
M^{T}_{I} = 0.1 \cdot 4 + 0.475 \cdot 0.2 + 0.1 \cdot 1 = 0.595 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 1 = 0.195 \, \varepsilon;
M^{T}_{330} = (0.595 + 0.195) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.0000664 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.595 \cdot 1 + 0.195 \cdot 1) / 3600 = 0.0002194 \, \epsilon/c;
M^{\Pi}_{I} = 0.108 \cdot 6 + 0.531 \cdot 0.2 + 0.1 \cdot 1 = 0.8542 \ \epsilon;
\mathbf{M}^{\Pi}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 1 = 0.195 \, \varepsilon;
M^{\Pi}_{330} = (0.8542 + 0.195) \cdot 30 \cdot 1 \cdot 10^{-6} = 0.0000315 \,\text{m/zod};
\mathbf{G}^{\Pi}_{330} = (0.8542 \cdot 1 + 0.195 \cdot 1) / 3600 = 0.0002914 \, z/c;
M_{I}^{X} = 0.12 \cdot 12 + 0.59 \cdot 0.2 + 0.1 \cdot 1 = 1.658 \ \epsilon;
\mathbf{M}^{X}_{2} = 0.475 \cdot 0.2 + 0.1 \cdot 1 = 0.195 \ \varepsilon;
M^{X}_{330} = (1,658 + 0,195) \cdot 195 \cdot 1 \cdot 10^{-6} = 0,0003613 \text{ m/zod};
G^{X}_{330} = (1,658 \cdot 1 + 0,195 \cdot 1) / 3600 = 0,0005147 \ z/c;
M = 0.0000664 + 0.0000315 + 0.0003613 = 0.0004592 \text{ m/zod};
G = \max\{0.0002194; 0.0002914; 0.0005147\} = 0.0005147 \ c/c.
M^{\mathrm{T}}_{I} = 1.34 \cdot 4 + 4.9 \cdot 0.2 + 0.84 \cdot 1 = 7.18 \, \varepsilon;
M^{T}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 1 = 1.82 z;
M^{T}_{337} = (7.18 + 1.82) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.000756 \text{ m/zod};
G^{T}_{337} = (7.18 \cdot 1 + 1.82 \cdot 1) / 3600 = 0.0025 \ \epsilon/c;
M^{\Pi}_{l} = 1.8 \cdot 6 + 5.31 \cdot 0.2 + 0.84 \cdot 1 = 12.702 \, \varepsilon;
\mathbf{M}^{\Pi_2} = 4.9 \cdot 0.2 + 0.84 \cdot 1 = 1.82 \ \varepsilon;
M^{\Pi}_{337} = (12,702 + 1,82) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0004357 \text{ m/zod};
G^{\Pi}_{337} = (12,702 \cdot 1 + 1,82 \cdot 1) / 3600 = 0,0040339 \ z/c;
\mathbf{M}^{X}_{I} = 2 \cdot 12 + 5.9 \cdot 0.2 + 0.84 \cdot 1 = 26.02 \,\varepsilon;
M^{X}_{2} = 4.9 \cdot 0.2 + 0.84 \cdot 1 = 1.82 \ \varepsilon;
M^{X}_{337} = (26.02 + 1.82) \cdot 195 \cdot 1 \cdot 10^{-6} = 0.0054288 \text{ m/zod};
G^{X}_{337} = (26.02 \cdot 1 + 1.82 \cdot 1) / 3600 = 0.0077333 \ e/c;
M = 0.000756 + 0.0004357 + 0.0054288 = 0.0066205 \text{ m/zod};
G = \max\{0.0025; 0.0040339; 0.0077333\} = 0.0077333 \ z/c.
M^{T}_{I} = 0.59 \cdot 4 + 0.7 \cdot 0.2 + 0.42 \cdot 1 = 2.92 \ \varepsilon;
M^{\mathrm{T}}_{2} = 0.7 \cdot 0.2 + 0.42 \cdot 1 = 0.56 \, \varepsilon;
M^{T}_{2732} = (2.92 + 0.56) \cdot 84 \cdot 1 \cdot 10^{-6} = 0.0002923 \text{ m/zod};
G^{T}_{2732} = (2.92 \cdot 1 + 0.56 \cdot 1) / 3600 = 0.0009667 \, e/c;
```

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\Pi_I} = 0.0342 \cdot 6 + 0.27 \cdot 0.2 + 0.019 \cdot 1 = 0.2782 \ \varepsilon;$

 $M^{\Pi}_{2} = 0.2 \cdot 0.2 + 0.019 \cdot 1 = 0.059 \ \varepsilon;$

```
\begin{split} & \mathbf{M}^{\Pi}{}_{I} = 0,639 \cdot 6 + 0,72 \cdot 0,2 + 0,42 \cdot 1 = 4,398 \ \varepsilon; \\ & \mathbf{M}^{\Pi}{}_{2} = 0,7 \cdot 0,2 + 0,42 \cdot 1 = 0,56 \ \varepsilon; \\ & \mathbf{M}^{\Pi}{}_{2732} = (4,398 + 0,56) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0001487 \ \textit{m/zoo}; \\ & \mathbf{G}^{\Pi}{}_{2732} = (4,398 \cdot 1 + 0,56 \cdot 1) \ / \ 3600 = 0,0013772 \ \textit{z/c}; \\ & \mathbf{M}^{X}{}_{I} = 0,71 \cdot 12 + 0,8 \cdot 0,2 + 0,42 \cdot 1 = 9,1 \ \varepsilon; \\ & \mathbf{M}^{X}{}_{2} = 0,7 \cdot 0,2 + 0,42 \cdot 1 = 0,56 \ \varepsilon; \\ & \mathbf{M}^{X}{}_{2732} = (9,1 + 0,56) \cdot 195 \cdot 1 \cdot 10^{-6} = 0,0018837 \ \textit{m/zoo}; \\ & \mathbf{G}^{X}{}_{2732} = (9,1 \cdot 1 + 0,56 \cdot 1) \ / \ 3600 = 0,0026833 \ \textit{z/c}; \\ & \mathbf{M} = 0,0002923 + 0,0001487 + 0,0018837 = 0,0023248 \ \textit{m/zoo}; \\ & \mathbf{G} = \max\{0,0009667; 0,0013772; \underline{0,0026833}\} = 0,0026833 \ \textit{z/c}. \end{split}
```

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

0										
Согласовано										
oly city	B3aM. NHB. Nº									
	подпись и дата									
	проп									
N. P.	инв. № подл	ŀ	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	9035.1 – ПМООС 3	Лист 7

1.1 1.1 Дорожная техника (ИЗА №6502)

Источниками выделений загрязняющих веществ являются двигатели дорожностроительных машин в период работы пускового двигателя, прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2005.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1998.
- Дополнения к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от дорожно-строительных машин, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,2280276	0,432706
304	Азот (II) оксид (Азота оксид)	0,0370507	0,070304
328	Углерод (Сажа)	0,0489244	0,059327
330	Сера диоксид (Ангидрид сернистый)	0,0401633	0,066347
337	Углерод оксид	1,5050344	1,826893
2732	Керосин	0,2512456	0,311626

Расчет выполнен для стоянки дорожно-строительных машин (ДМ), хранящихся при температуре окружающей среды. Пробег ДМ при выезде составляет 0,1 км, при въезде -0,1 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -1 мин, при возврате на неё -1 мин. Количество дней для расчётного периода: теплого -180, переходного -60, холодного с температурой от -5° С до -10° С -90, холодного с температурой от -15° С до -20° С -4.

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Максі	имальное ко	личест	во ДМ			Одн
Наименование			выезд/въе	Выоз п	D7 02 II	Скор	Элект	овре
ДМ	Тип ДМ	всего	зд в	выезд за 1	за 1	ость,	роста	мен
Д ,1V1		Всего	течение	час	час	км/ч	ртер	ност
			суток	час	час			Ь
Экскаватор	ДМ гусеничн	я, 5	5	1	1	10	+	+
Hitachi ZX 240-3	мощностью 101-160 н	Вт						
	(137-218 л.с.)							
Экскаватор	ДМ гусеничн	ая, 3	3	1	1	10	+	+
Hitachi ZX120	мощностью 61-100 н	Вт						
	(83-136 л.с.)							
Экскаватор-	ДМ колесн	ая, 2	2	1	1	10	+	+
погрузчик ЈСВ	мощностью 61-100 н	Вт						
3CX	(83-136 л.с.)							

Инв. № подл Подпись и дата

Изм. Кол.уч.

Лист

№ док. Подпись

Согласовано

		Макси	мальное ко	личест	во ДМ			Одн
Наименование ДМ	Тип ДМ	всего	выезд/въе зд в течение суток	выезд за 1 час	въезд за 1 час	Скор ость, км/ч	-	мен нос ь
Бульдозер Komatsu D65	ДМ гусеничная, мощностью 101-160 кВт (137-218 л.с.)		5	1	1	10	+	+
Бульдозер Д3- 42	ДМ гусеничная, мощностью 61-100 кВт (83-136 л.с.)		3	1	1	10	+	+
Автогрейдер Д3-122	ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	2	2	1	1	10	+	+
спецшасси	ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)		1	1	1	10	+	+
спецшасси	ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)		2	1	1	10	+	+
Кран гусеничный ДЭК-401	ДМ гусеничная, мощностью 61-100 кВт (83-136 л.с.)		2	1	1	10	+	+
Кран гусеничный ДЭК-401	ДМ гусеничная, мощностью 61-100 кВт (83-136 л.с.)		1	1	1	10	+	+
Кран автомобильны й КС-55729-3В	ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	4	4	1	1	10	+	+
Кран автомобильны й КС-4572	ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)		7	1	1	10	+	+
Погрузчик ТО- 18Б	ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)		1	1	1	10	+	+
Автогидроподъ емник АГП-28	ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)		2	1	1	10	+	+
Самоходный подъемник Haulotte HA32PX	ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)		2	1	1	10	+	+
	ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)		5	1	1	10	+	+

 Инв. № подл
 Подпись и дата
 Взам. инв. №

Изм. Кол.уч. Лист № док. Подпись Дата

9035.1 – ПМООС 3

Лист

9

		Макси	імальное ко	личест	во ДМ			Одн
Наименование ДМ	Тип ДМ	всего	выезд/въе зд в течение суток	выезд за 1 час	въезд за 1 час	Скор ость, км/ч		овре мен ност ь
Автомобиль-	ДМ колесная,	2	2	1	1	10	+	+
	мощностью 161-260 кВт							
	(219-354 л.с.)							
низкорамным								
полуприцепом								
Автомобиль-	ДМ колесная,	6	5	1	1	10	+	+
самосвал	мощностью свыше 260							
КамА3-6520	кВт (355 л.с. и более)							
Автомобиль	ДМ колесная,	8	7	1	1	10	+	+
бортовой	мощностью 161-260 кВт							
КамА3-53212	(219-354 л.с.)							
Автомобиль	ДМ колесная,	3	3	1	1	10	+	+
бортовой ГАЗ-	мощностью 61-100 кВт							
33021	(83-136 л.с.)							
Каток	ДМ гусеничная,	4	4	1	1	10	+	+
кулачковый ДУ-	мощностью 36-60 кВт							
94	(49-82 л.с.)							

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы i-го вещества одной машиной k-й группы в день при выезде с территории M'_{ik} и возврате M''_{ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M'}_{ik} = \mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi} + \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{\mathcal{A}B ik} \cdot \mathbf{t}_{\mathcal{A}B I} + \mathbf{m}_{XX ik} \cdot \mathbf{t}_{XX I}, z$$
 (1.1.1)

$$M''_{ik} = m_{\mathcal{A}B\ ik} \cdot t_{\mathcal{A}B\ 2} + m_{XX\ ik} \cdot t_{XX\ 2}, 2 \tag{1.1.2}$$

где $m_{\Pi ik}$ – удельный выброс *i*-го вещества пусковым двигателем, ε/muH ;

 $m_{\Pi P \ ik}$ – удельный выброс i-го вещества при прогреве двигателя машины k-й группы, z/мин; $m_{\mathcal{J}B \ ik}$ – удельный выброс i-го вещества при движении машины k-й группы с условно постоянной скоростью , z/мин;

 $m_{XX\ ik}$ — удельный выброс **i**-го вещества при работе двигателя машины **k**-й группы на холостом ходу, ε/muh ;

 $t_{\Pi}, t_{\Pi P}$ - время работы пускового двигателя и прогрева двигателя, мин;

 $t_{\mathcal{A}B\ I},\ t_{\mathcal{A}B\ 2}$ - время движения машины при выезде и возврате рассчитывается из отношения средней скорости движения и длины проезда, *мин*;

 t_{XXI}, t_{XX2} - время работы двигателя на холостом ходу при выезде и возврате, мин;

При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член $\mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi}$ из формулы (1.1.1) исключается.

Валовый выброс i-го вещества ДМ рассчитывается раздельно для каждого периода года по формуле (1.1.3):

$$\mathbf{M}^{i}_{i} = \sum_{k=1}^{k} (\mathbf{M}'_{ik} + \mathbf{M}''_{ik}) \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, \, m/200$$
 (1.1.3)

где N_k – среднее количество ДМ κ -й группы, ежедневно выходящих на линию;

 D_P - количество рабочих дней в расчетном периоде (холодном, теплом, переходном);

j – период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

Взам. инв.

Подпись и дата

11

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ для машин, хранящихся на закрытой отапливаемой стоянке не учитывается.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.3):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathrm{T}}_{i} + \mathbf{M}^{\mathrm{\Pi}}_{i} + \mathbf{M}^{\mathrm{X}}_{i}, \, m/200$$
 (1.1.3)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$G_i = \sum_{k=1}^{k} (M'_{ik} \cdot N'_k + M''_{ik} \cdot N''_k) / 3600, \varepsilon/c$$

$$(1.1.2)$$

где N'_k , N''_k — количество машин k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) ДМ. Из полученных значений G_i выбирается максимальное с учетом одновременности движения ДМ разных групп.

Удельные выбросы загрязняющих веществ при работе пускового двигателя, прогреве, пробеге, на холостом ходу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ, г/мин

Согласовано

Изм. Кол.уч.

Лист

№ док. Подпись

			Γ	Трогре	В	Д	вижені	ие	Хол
Тип	Загрязняющее вещество	Пуск	Т	П	Х	Т	П	Х	TO XO
ДМ г	усеничная, мощностью 101-160 кВ	т (137-2	218 л.с.	.)	•	•	•	•	
	Азота диоксид (Азот (IV) оксид)	2,72	0,624	0,936	0,936	3,208	3,208	3,208	0,6
	Азот (II) оксид (Азота оксид)	0,442	0,101 4	0,152	0,152	0,521	0,521	0,521	0,1
	Углерод (Сажа)	-	0,1	0,54	0,6	0,45	0,603	0,67	0,
	Сера диоксид (Ангидрид сернистый)	0,058	0,16	0,18	0,2	0,31	0,342	0,38	0,1
	Углерод оксид	35	3,9	7,02	7,8	2,09	2,295	2,55	3,9
	Бензин (нефтяной, малосернистый)	2,9	-	-	-	-	-	-	-
	Керосин	-	0,49	1,143	1,27	0,71	0,765	0,85	0,4
ДМ г	усеничная, мощностью 61-100 кВт	(83-136	5 л.c.)						
	Азота диоксид (Азот (IV) оксид)	1,36	0,384	0,576	0,576	1,976	1,976	1,976	0,3
	Азот (II) оксид (Азота оксид)	0,221	0,062 4	0,093 6	0,093 6	0,321	0,321	0,321	0,0 4
	Углерод (Сажа)	-	0,06	0,324	0,36	0,27	0,369	0,41	0,0
	Сера диоксид (Ангидрид сернистый)	0,042	0,097	0,108	0,12	0,19	0,207	0,23	0,0
	Углерод оксид	25	2,4	4,32	4,8	1,29	1,413	1,57	2,
	Бензин (нефтяной, малосернистый)	2,1	-	-	-	-	-	-	-
	Керосин	-	0,3	0,702	0,78	0,43	0,459	0,51	0,
ДМ к	олесная, мощностью 61-100 кВт (8	3-136 <i>r</i>	1.C.)						
	Азота диоксид (Азот (IV) оксид)	1,36	0,384	0,576	0,576	1,976	1,976	1,976	0,3
	Азот (II) оксид (Азота оксид)	0,221	0,062 4	0,093 6	0,093 6	0,321	0,321	0,321	0,0 4
			0,06	0,324	0,36	0,27	0,369	0,41	0,0

 $9035.1 - \Pi MOOC 3$

12

			Г	Трогре	В	Д	вижені	ие	Холо
Тип	Загрязняющее вещество	Пуск	Т	П	Х	Т	П	Х	той ход
	Сера диоксид (Ангидри сернистый)	д 0,042	0,097	0,108	0,12	0,19	0,207	0,23	0,09
	Углерод оксид	25	2,4	4,32	4,8	1,29	1,413	1,57	2,4
	Бензин (нефтяної малосернистый)	í, 2,1	-	-	-	-	-	-	-
	Керосин	-	0,3	0,702	0,78	0,43	0,459	0,51	0,3
ДМ к	олесная, мощностью 161-260 кВт	(219-35	4 л.с.)						
	Азота диоксид (Азот (IV) оксид)	3,6	1,016	1,528	1,528	5,176	5,176	5,176	1,01
	Азот (II) оксид (Азота оксид)	0,585	0,165	0,248 3	0,248	0,841	0,841	0,841	0,16
	Углерод (Сажа)	-	0,17	0,918	1,02	0,72	0,972	1,08	0,17
	Сера диоксид (Ангидри сернистый)	д 0,095	0,25	0,279	0,31	0,51	0,567	0,63	0,25
	Углерод оксид	57	6,3	11,34	12,6	3,37	3,699	4,11	6,31
	Бензин (нефтяной малосернистый)	i, 4,7	-	-	-	-	-	-	-
	Керосин	-	0,79	1,845	2,05	1,14	1,233	1,37	0,79
ДМ к	олесная, мощностью свыше 260 і	кВт (355	л.с. и б	олее)					
	Азота диоксид (Азот (IV) оксид)	5,6	1,6	2,4	2,4	8,128	8,128	8,128	1,59
	Азот (II) оксид (Азота оксид)	0,91	0,26	0,39	0,39	1,321	1,321	1,321	0,25 7
	Углерод (Сажа)	-	0,26	1,404	1,56	1,13	1,53	1,7	0,26
	Сера диоксид (Ангидри сернистый)	д 0,15	0,26	0,288	0,32	0,8	0,882	0,98	0,39
	Углерод оксид	90	9,9	16,92	18,8	5,3	5,823	6,47	9,92
	Бензин (нефтяної	. 7 -	_	_	-	_	-	-	-
	1	í, 7,5							
	малосернистый) Керосин	1, 7,5	1,24	2,898	3,22	1,79	1,935	2,15	1,24
ДМ к	малосернистый)	_	· · · · · · · · · · · · · · · · · · ·	2,898	3,22	1,79	1,935	2,15	1,2
ДМ к	малосернистый) Керосин	_	· · · · · · · · · · · · · · · · · · ·	1	3,22	-			
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт	(137-21	8 л.с.)	0,936	0,936	3,208			0,62
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид)	- (137-21 2,72	8 л.с.) 0,624 0,101	0,936	0,936	3,208	3,208	3,208	0,10
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид)	(137-21 2,72 0,442	8 л.с.) 0,624 0,101 4	0,936 0,152	0,936 0,152	3,208 0,521	3,208 0,521	3,208 0,521	0,62 0,10 4
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри	(137-21 2,72 0,442	8 л.с.) 0,624 0,101 4 0,1	0,936 0,152 0,54	0,936 0,152 0,6	3,208 0,521 0,45	3,208 0,521 0,603	3,208 0,521 0,67	0,62 0,10 4 0,1
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри сернистый)	- (137-21 2,72 0,442 - д 0,058	8 л.с.) 0,624 0,101 4 0,1 0,16	0,936 0,152 0,54 0,18	0,936 0,152 0,6 0,2	3,208 0,521 0,45 0,31	3,208 0,521 0,603 0,342	3,208 0,521 0,67 0,38	0,62 0,10 4 0,1 0,1
ДМ к	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри сернистый) Углерод оксид Бензин (нефтяной	- (137-21 2,72 0,442 - д 0,058	8 л.с.) 0,624 0,101 4 0,1 0,16	0,936 0,152 0,54 0,18	0,936 0,152 0,6 0,2	3,208 0,521 0,45 0,31	3,208 0,521 0,603 0,342	3,208 0,521 0,67 0,38 2,55	0,62 0,10 4 0,1 0,1 3,9
	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри сернистый) Углерод оксид Бензин (нефтяной малосернистый)	- (137-21 2,72 0,442 - д 0,058 35 1, 2,9	8 л.с.) 0,624 0,101 4 0,1 0,16 3,9 - 0,49	0,936 0,152 0,54 0,18 7,02	0,936 0,152 0,6 0,2 7,8	3,208 0,521 0,45 0,31 2,09	3,208 0,521 0,603 0,342 2,295	3,208 0,521 0,67 0,38 2,55	0,62 0,10 4 0,1 0,1 3,9
	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри сернистый) Углерод оксид Бензин (нефтяной малосернистый) Керосин	- (137-21 2,72 0,442 - д 0,058 35 1, 2,9	8 л.с.) 0,624 0,101 4 0,1 0,16 3,9 - 0,49	0,936 0,152 0,54 0,18 7,02 - 1,143	0,936 0,152 0,6 0,2 7,8	3,208 0,521 0,45 0,31 2,09 - 0,71	3,208 0,521 0,603 0,342 2,295 - 0,765	3,208 0,521 0,67 0,38 2,55 - 0,85	0,62 0,10 4 0,1 0,1 3,9
	малосернистый) Керосин олесная, мощностью 101-160 кВт Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид) Углерод (Сажа) Сера диоксид (Ангидри сернистый) Углерод оксид Бензин (нефтяной малосернистый) Керосин усеничная, мощностью 36-60 кВт	- (137-21 2,72 0,442 - д 0,058 35 1, 2,9 - (49-82 л	8 л.с.) 0,624 0,101 4 0,1 0,16 3,9 - 0,49 c.) 0,232	0,936 0,152 0,54 0,18 7,02 - 1,143	0,936 0,152 0,6 0,2 7,8 -	3,208 0,521 0,45 0,31 2,09 - 0,71	3,208 0,521 0,603 0,342 2,295 - 0,765	3,208 0,521 0,67 0,38 2,55 - 0,85	0,62 0,10 4 0,1 0,10 3,9 - 0,4

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

					Γ	Трогре	В	Д	вижени	1e	Холос
Тип	Заг	рязняющее в	вещество	Пуск	т	П	Х	Т		Х	той
					ı	11	^	-	''	^	ход
	Cepa	диоксид	(Ангидрид	0,029	0,058	0,064	0,072	0,12	0,135	0,15	0,058
	сернист	ый)				8					
	Углерод	оксид		23,3	1,4	2,52	2,8	0,77	0,846	0,94	1,44
	Бензин		(нефтяной,	5,8	-	-	-	-	-	-	-
	малосер	нистый)									
	Керосин	I		-	0,18	0,423	0,47	0,26	0,279	0,31	0,18

Время работы пускового двигателя в зависимости от расчетного периода приведено в таблице 1.1.4.

Таблица 1.1.4 - Время работы пускового двигателя, мин

Тип попочино строитольной мониции		Время					
Тип дорожно-строительной машины	T	П	Χ				
ДМ гусеничная, мощностью 101-160 кВт (137-218 л.с.)	1	2	4				
ДМ гусеничная, мощностью 61-100 кВт (83-136 л.с.)	1	2	4				
ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)	1	2	4				
ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	1	2	4				
ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)	1	2	4				
ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)	1	2	4				
ДМ гусеничная, мощностью 36-60 кВт (49-82 л.с.)	1	2	4				

Время прогрева двигателей в зависимости от температуры воздуха и условий хранения приведено в таблице 1.1.5.

Таблица 1.1.5 - Время прогрева двигателей, мин

Согласовано

	В	ремя г	ірогре воз	ва при духа, <i>п</i>		ератур	e
Тип дорожно-строительной машины	выш е +5°C	+5 -5°C	-5	-10	-15 -20°C		
ДМ гусеничная, мощностью 101-160 кВт (137-218	2	6	12	20	28	36	45
л.с.)							
ДМ гусеничная, мощностью 61-100 кВт (83-136	2	6	12	20	28	36	45
л.с.)							
ДМ колесная, мощностью 61-100 кВт (83-136 л.с.)	2	6	12	20	28	36	45
ДМ колесная, мощностью 161-260 кВт (219-354	2	6	12	20	28	36	45
л.с.)							
ДМ колесная, мощностью свыше 260 кВт (355 л.с.	2	6	12	20	28	36	45
и более)							
ДМ колесная, мощностью 101-160 кВт (137-218	2	6	12	20	28	36	45
л.с.)							
ДМ гусеничная, мощностью 36-60 кВт (49-82 л.с.)	2	6	12	20	28	36	45

					9035.1 – ПМООС 3							Лист		
	$M'^{\mathrm{T}}_{301} = 0.624 \cdot 2 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 5.7216 \varepsilon;$													
				chi ZX 2 2 + 3 20		1 / 5 · 60 + 0 /	$624 \cdot 1 = 5$	7216	2.					
			-	веден ни										
		Pac	чет г	одового	ИМ	аксимально	разового	выде	ления	загря	ІОІКНЕІ	цих в	еществ	В
				•		•	-82 л.с.)	_	6	12	20	28	36	45

14

```
M'^{\Pi}_{301} = 0.936 \cdot 6 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 10.0896 \ \varepsilon;
M''^{\Pi}_{30I} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \epsilon;
M^{\Pi}_{30I} = (10,0896 + 4,4736) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,004369 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (10,0896 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0040453 \, z/c;
M'^{X}_{301} = 0.936 \cdot 12 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 15,7056 c;
M''^{X}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \epsilon;
M^{X}_{30I} = (15,7056 + 4,4736) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0090806 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (15,7056 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0056053 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.936 \cdot 20 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 23.1936 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 4.4736 \ \epsilon;
M^{X-10..-15^{\circ}C}_{301} = (23,1936+4,4736) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0041501 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (23,1936 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0076853 \text{ c/c};
M'^{X-15..-20^{\circ}C}_{301} = 0.936 \cdot 28 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 30.6816 z;
M''^{X-15..-20^{\circ}C}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (30,6816 + 4,4736) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0007031 \text{ m/zod};
G_{301} = (30,6816 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0097653 \ z/c;
M = 0.0091757 + 0.004369 + 0.0090806 + 0.0041501 + 0.0007031 = 0.0274785 \,\text{m/zod};
G = \max\{0.002832; 0.0040453; 0.0056053; 0.0076853; 0.0097653\} = 0.0097653 \ c/c.
M'^{\mathrm{T}}_{304} = 0.1014 \cdot 2 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.9294 \, \varepsilon;
M''^{T}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 c;
M^{T}_{304} = (0.9294 + 0.7266) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0014904 \, \text{m/200};
G^{T}_{304} = (0.9294 \cdot 1 + 0.7266 \cdot 1) / 3600 = 0.00046 \ z/c;
M'^{\Pi}_{304} = 0.152 \cdot 6 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 1.6386 c;
M''^{\Pi}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \ \epsilon;
M^{\Pi}_{304} = (1,6386 + 0.7266) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0007096 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (1,6386 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,000657 \ z/c;
M'^{X}_{304} = 0.152 \cdot 12 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 2.5506 c;
M''^{X}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \ \epsilon;
M^{X}_{304} = (2,5506 + 0,7266) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0014747 \, \text{m/zod};
G^{X}_{304} = (2,5506 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0009103 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.152 \cdot 20 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 3.7666 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 c;
M^{X-10..-15^{\circ}C}_{304} = (3,7666 + 0,7266) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,000674 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (3,7666 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0012481 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.152 \cdot 28 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 4.9826 \ \varepsilon;
M''^{X-15...20^{\circ}C}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (4.9826 + 0.7266) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0001142 \text{ m/zod};
G_{304} = (4,9826 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0015859 \ z/c;
M = 0.0014904 + 0.0007096 + 0.0014747 + 0.000674 + 0.0001142 = 0.0044629 \, \text{m/zod};
G = \max\{0.00046; 0.000657; 0.0009103; 0.0012481; 0.0015859\} = 0.0015859 \ \epsilon/c.
M'^{\mathrm{T}}_{328} = 0.1 \cdot 2 + 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.84 \ \varepsilon;
M''^{\mathrm{T}}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 \ \varepsilon;
M^{T}_{328} = (0.84 + 0.64) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.001332 \text{ m/zod};
G^{T}_{328} = (0.84 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0004111 \ z/c;
M'^{\Pi}_{328} = 0.54 \cdot 6 + 0.603 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 4.0636 c;
M''^{\Pi}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 z;
M^{\Pi}_{328} = (4,0636 + 0,64) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0014111 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (4.0636 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0013066 \, \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{T}_{301} = 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 4.4736 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $\mathbf{G}^{\mathrm{T}}_{301} = (5,7216 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,002832 \ \epsilon/c;$

 $M^{T}_{301} = (5,7216 + 4,4736) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0091757 \text{ m/zod};$

15

```
M^{X}_{328} = (8,104+0,64) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0039348 \text{ m/zod};
G^{X}_{328} = (8,104 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0024289 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 0.6 \cdot 20 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 12,904 z;
M''^{X-10..-15^{\circ}C}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (12,904+0,64) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0020316 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (12,904 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0037622 \ z/c;
M'^{\text{X-15..-20^{\circ}C}}_{328} = 0.6 \cdot 28 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 17,704 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 z;
M^{\text{X}-15...-20^{\circ}\text{C}}_{328} = (17,704+0,64) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0003669 \text{ m/zod};
G_{328} = (17.704 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0050956  z/c:
M = 0.001332 + 0.0014111 + 0.0039348 + 0.0020316 + 0.0003669 = 0.0090764  m/200;
G = \max\{0.0004111; 0.0013066; 0.0024289; 0.0037622; 0.0050956\} = 0.0050956 \ c/c.
M'^{\mathrm{T}}_{330} = 0.16 \cdot 2 + 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.852 \ \varepsilon;
M''^{\mathrm{T}}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \ \varepsilon;
M^{T}_{330} = (0.852 + 0.532) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0012456 \text{ m/zod};
G^{T}_{330} = (0.852 \cdot 1 + 0.532 \cdot 1) / 3600 = 0.0003844 \ z/c;
M'^{\Pi}_{330} = 0.18 \cdot 6 + 0.342 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 1.6504 z;
M''^{\Pi}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 z;
M^{\Pi}_{330} = (1,6504 + 0,532) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0006547 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (1,6504 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,0006062 \, c/c;
M'^{X}_{330} = 0.2 \cdot 12 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 3.016 z;
M''^{X}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \ \epsilon;
M^{X}_{330} = (3.016 + 0.532) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0015966 \text{ m/zod};
G^{X}_{330} = (3,016 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,0009856 \, z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.2 \cdot 20 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 4.616 z;
M''^{X-10..-15^{\circ}C}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (4,616+0,532) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0007722 \text{ m/200};
G^{X-10..-15^{\circ}C}_{330} = (4,616 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,00143 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.2 \cdot 28 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 6.216 c;
M''^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 c;
M^{X-15..-20^{\circ}C}_{330} = (6.216 + 0.532) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.000135 \text{ m/200};
G_{330} = (6.216 \cdot 1 + 0.532 \cdot 1) / 3600 = 0.0018744 \, \epsilon/c;
M = 0.0012456 + 0.0006547 + 0.0015966 + 0.0007722 + 0.000135 = 0.0044041 \, \text{m/zod};
G = \max\{0.0003844; 0.0006062; 0.0009856; 0.00143; 0.0018744\} = 0.0018744 \ z/c.
M'^{\mathrm{T}}_{337} = 3.9 \cdot 2 + 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 14.218 \, \varepsilon;
M''^{T}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 \ \epsilon;
M^{T}_{337} = (14,218 + 6,418) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0185724 \text{ m/zod};
G^{T}_{337} = (14,218 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0057322 \ z/c;
M^{\Pi}_{337} = 7.02 \cdot 6 + 2.295 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 48.784 \, \epsilon;
M''^{\Pi}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 \ \epsilon;
M^{\Pi}_{337} = (48,784 + 6,418) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0165606 \, \text{m/zod};
G^{\Pi}_{337} = (48,784 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0153339 \, e/c;
M'^{X}_{337} = 7.8 \cdot 12 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 100.57 \ \varepsilon;
M''^{X}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 z;
M^{X}_{337} = (100.57 + 6.418) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0481446 \, \text{m/zod};
G^{X}_{337} = (100.57 \cdot 1 + 6.418 \cdot 1) / 3600 = 0.0297189 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{337} = 7.8 \cdot 20 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 162.97 \text{ } z;
M''^{X-10...15^{\circ}C}_{337} = 2,09 \cdot 0,1 / 5 \cdot 60 + 3,91 \cdot 1 = 6,418 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (162,97+6,418) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0254082 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

 $M'^{X}_{328} = 0.6 \cdot 12 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 8.104 z;$

 $M''^{X}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 z;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

16

```
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (225,37+6,418) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0046358 \text{ m/zod};
G_{337} = (225,37 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0643856 \ z/c;
M = 0.0185724 + 0.0165606 + 0.0481446 + 0.0254082 + 0.0046358 = 0.1133216  m/200;
G = \max\{0.0057322; 0.0153339; 0.0297189; 0.0470522; 0.0643856\} = 0.0643856 
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
\mathbf{M}^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 5 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 5 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 5 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 5 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \frac{2}{c}
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/sod};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M^{\prime}_{2732} = 0.49 \cdot 2 + 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 2.322 c;
M''^{T}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 c;
M^{\mathrm{T}}_{2732} = (2,322 + 1,342) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0032976 \, \text{m/zod};
G^{T}_{2732} = (2,322 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0010178 \ \epsilon/c;
M'^{\Pi}_{2732} = 1,143 \cdot 6 + 0,765 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 8,266 c;
M''^{\Pi}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 z;
M^{\Pi}_{2732} = (8,266 + 1,342) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0028824 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (8,266 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0026689 \, \epsilon/c;
M'^{X}_{2732} = 1.27 \cdot 12 + 0.85 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 16.75 \ \epsilon;
M''^{X}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 c;
M^{X}_{2732} = (16.75 + 1.342) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0081414 \text{ m/zod};
G^{X}_{2732} = (16,75 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0050256 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 1,27 \cdot 20 + 0,85 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 26,91 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (26.91 + 1.342) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0042378 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (26.91 \cdot 1 + 1.342 \cdot 1) / 3600 = 0.0078478 \ \epsilon/c;
M'^{X-15...20^{\circ}C}_{2732} = 1,27 \cdot 28 + 0,85 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 37,07 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 z;
M^{\text{X-15..-20°C}}_{2732} = (37,07+1,342) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0007682 \text{ m/zod};
G_{2732} = (37,07 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,01067 \ e/c;
M = 0.0032976 + 0.0028824 + 0.0081414 + 0.0042378 + 0.0007682 = 0.0193274  m/200;
G = \max\{0.0010178; 0.0026689; 0.0050256; 0.0078478; 0.01067\} = 0.01067 \ c/c.
```

 $9035.1 - \Pi MOOC 3$

 $G^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (162.97 \cdot 1 + 6.418 \cdot 1) / 3600 = 0.0470522 \ z/c;$ $M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 7.8 \cdot 28 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 225.37 \ z;$

 $M''^{X-15...-20^{\circ}C}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

17

```
M^{\Pi}_{30I} = (6.2112 + 2.7552) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.001614 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (6,2112 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0024907 \ z/c;
M'^{X}_{30I} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 9.6672 z;
M''^{X}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{X_{301}} = (9.6672 + 2.7552) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.003354 \text{ m/zod}:
\mathbf{G}^{X}_{301} = (9.6672 \cdot 1 + 2.7552 \cdot 1) / 3600 = 0.0034507 \ z/c;
M'^{X-10..-15^{\circ}C}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 14,2752 z;
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \, \epsilon;
M^{X-10..-15^{\circ}C}_{301} = (14,2752 + 2,7552) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0015327 \text{ m/200};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (14,2752 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0047307 \ z/c;
M'^{X-15..-20^{\circ}C}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 18.8832 c;
M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{\text{X-15..-20}^{\circ}\text{C}}_{301} = (18,8832 + 2,7552) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0002597 \text{ m/sod};
G_{30I} = (18,8832 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0060107 \ z/c;
M = 0.0033903 + 0.001614 + 0.003354 + 0.0015327 + 0.0002597 = 0.0101507 \, m/cod;
G = \max\{0.001744; 0.0024907; 0.0034507; 0.0047307; 0.0060107\} = 0.0060107 \ z/c.
M'^{\mathrm{T}}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.5724 \, \varepsilon;
M''^{T}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{T}_{304} = (0.5724 + 0.4476) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0005508 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.5724 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0002833 \ \epsilon/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.0092 z;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{\Pi}_{304} = (1,0092 + 0,4476) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0002622 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (1,0092 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0004047 \, \epsilon/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.5708 \ \varepsilon;
M''^{X}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 z;
M^{X}_{304} = (1,5708 + 0,4476) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,000545 \, \text{m/zod};
G^{X}_{304} = (1.5708 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0005607 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 2.3196 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2.3196 + 0.4476) \cdot 30 \cdot 3 \cdot 10^{-6} = 0.000249 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,3196 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0007687 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 3.0684 \text{ z};
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \varepsilon;
M^{X-15...20^{\circ}C}_{304} = (3.0684 + 0.4476) \cdot 4 \cdot 3 \cdot 10^{-6} = 0.0000422 \, \text{m/zod};
G_{304} = (3,0684 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0009767 \ z/c;
M = 0.0005508 + 0.0002622 + 0.000545 + 0.000249 + 0.0000422 = 0.0016492 \, m/cod;
G = \max\{0,0002833; 0,0004047; 0,0005607; 0,0007687; 0,0009767\} = 0,0009767 \ z/c.
M'^{T}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.504 z;
M''^{T}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;
M^{T}_{328} = (0.504 + 0.384) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0004795 \text{ m/zod};
G^{T}_{328} = (0.504 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.0002467 \ z/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 2.4468 \ \varepsilon;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;
                                                                          9035.1 - \Pi MOOC 3
```

Экскаватор Hitachi ZX120

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{T}_{30I} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 3.5232 c;$

 $M^{\mathrm{T}}_{301} = (3,5232 + 2,7552) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0033903 \, \text{m/zod};$

 $M^{\prime \Pi}_{301} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 6.2112 \, \epsilon;$

 $M''^{T}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;$

 $M''^{\Pi}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;$

 $\mathbf{G}^{\mathrm{T}}_{301} = (3,5232 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,001744 \, \varepsilon/c;$

18

```
\mathbf{G}^{\Pi}_{328} = (2,4468 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,0007863 \, c/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 4.872 z;
M''^{X}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X}_{328} = (4,872 + 0,384) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,0014191 \text{ m/zod};
G^{X}_{328} = (4.872 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.00146 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 7.752 c;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,752+0,384) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0007322 \text{ m/sod};
\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,752 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00226 \ \epsilon/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 10.632 \text{ } z;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (10,632+0,384) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0001322 \text{ m/200};
G_{328} = (10,632 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00306 \, \epsilon/c;
M = 0.0004795 + 0.0005095 + 0.0014191 + 0.0007322 + 0.0001322 = 0.0032726 \, \text{m/zod};
G = \max\{0.0002467; 0.0007863; 0.00146; 0.00226; 0.00306\} = 0.00306 \ z/c.
M^{\prime T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.519 z;
M''^{T}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 c;
M^{T}_{330} = (0.519 + 0.325) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0004558 \text{ m/zod};
G^{T}_{330} = (0.519 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0002344 \ z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.9934 \, z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{\Pi}_{330} = (0.9934 + 0.325) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0002373 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.9934 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0003662 \, \epsilon/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 1.813 z;
M''^{X}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{X}_{330} = (1.813 + 0.325) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0005773 \text{ m/zod};
\mathbf{G}^{X}_{330} = (1.813 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0005939 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 2.773 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,773+0,325) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0002788 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,773 \cdot 1 + 0,325 \cdot 1) / 3600 = 0,0008606 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 3.733 c;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3,733 + 0,325) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0000487 \text{ m/200};
G_{330} = (3.733 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0011272 \ z/c;
M = 0.0004558 + 0.0002373 + 0.0005773 + 0.0002788 + 0.0000487 = 0.0015978  m/200;
G = \max\{0.0002344; 0.0003662; 0.0005939; 0.0008606; 0.0011272\} = 0.0011272 \ c/c.
M'^{T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 8.748 \ \epsilon;
M''^{T}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{T}_{337} = (8,748 + 3,948) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0068558 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{337} = (8,748 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0035267 \, \epsilon/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 30.0156 c;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\Pi}_{337} = (30,0156 + 3,948) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0061134 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (30,0156 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0094343 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 61.884 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{X}_{337} = (61,884 + 3,948) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,0177746 \text{ m/zod};
G^{X}_{337} = (61,884 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0182867 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 100.284 c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\Pi}_{328} = (2,4468 + 0,384) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0005095 \text{ m/200};$

19

```
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (100,284+3,948) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0093809 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (100,284 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0289533 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 138,684 z;
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (138,684 + 3,948) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0017116 \text{ m/200};
G_{337} = (138,684 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,03962 \, c/c;
M = 0.0068558 + 0.0061134 + 0.0177746 + 0.0093809 + 0.0017116 = 0.0418364  m/200;
G = \max\{0.0035267; 0.0094343; 0.0182867; 0.0289533; 0.03962\} = 0.03962 \ z/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 3 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 3 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15...-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 3 \cdot 10^{-6} = 0 \text{ m/sod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 1.416 \, \epsilon;
M''^{\mathrm{T}}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \, \epsilon;
M^{\mathrm{T}}_{2732} = (1,416 + 0,816) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0012053 \, \text{m/zod};
G^{T}_{2732} = (1,416 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00062 \ z/c;
M'^{\Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 5.0628 \, \epsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
M^{\Pi}_{2732} = (5.0628 + 0.816) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0010582 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (5,0628 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.001633 \, \epsilon/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 10.272 z;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 c;
M^{X}_{2732} = (10.272 + 0.816) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0029938 \, \text{m/zod};
G^{X}_{2732} = (10,272 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00308 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 16.512 c;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \varepsilon;
M^{\text{X-}10..-15^{\circ}\text{C}}_{2732} = (16,512 + 0,816) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0015595 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,512 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,0048133 \ z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 22.752 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 z;
M^{\text{X-15..-20}^{\circ}\text{C}}_{2732} = (22,752 + 0,816) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0002828 \text{ m/sod};
G_{2732} = (22,752 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,0065467 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{X-10..-15^{\circ}C}_{337} = 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 3.948 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

20

```
M''^{\mathrm{T}}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{T}_{301} = (2,3376 + 1,5696) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0014066 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,3376 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,0010853 \, \epsilon/c;
M'^{\Pi}_{301} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 5.0256 c;
M^{\prime\prime}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{\Pi}_{30I} = (5,0256 + 1,5696) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0007914 \, \text{m/zod};
\mathbf{G}^{\Pi}_{30I} = (5,0256 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,001832 \, \epsilon/c;
M'^{X}_{30I} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 8.4816 c;
M''^{X}_{301} = 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 1.5696 \ \epsilon;
M^{X}_{301} = (8.4816 + 1.5696) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0018092 \text{ m/zod};
\mathbf{G}^{X}_{301} = (8,4816 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,002792 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 13.0896 z;
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \epsilon;
M^{X-10..-15^{\circ}C}_{301} = (13,0896 + 1,5696) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0008796 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (13.0896 \cdot 1 + 1.5696 \cdot 1) / 3600 = 0.004072 \, z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0,576 \cdot 28 + 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 17,6976 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (17,6976 + 1,5696) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001541 \text{ m/zod};
G_{301} = (17.6976 \cdot 1 + 1.5696 \cdot 1) / 3600 = 0.005352 \, z/c;
M = 0.0014066 + 0.0007914 + 0.0018092 + 0.0008796 + 0.0001541 = 0.0050409 \, \text{m/zod};
G = \max\{0.0010853; 0.001832; 0.002792; 0.004072; 0.005352\} = 0.005352 
M^{\prime T}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.3798 \, \epsilon;
M''^{\mathrm{T}}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{T}_{304} = (0.3798 + 0.255) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002285 \text{ m/zod};
G^{T}_{304} = (0.3798 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0001763 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.8166 \, \epsilon;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\Pi}_{304} = (0.8166 + 0.255) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001286 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.8166 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0002977 \ z/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 1.3782 \, \epsilon;
M''^{X}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 z;
M^{X}_{304} = (1.3782 + 0.255) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.000294 \text{ m/zod};
G^{X}_{304} = (1,3782 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0004537 \ z/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.127 \ \epsilon;
M''^{X-10...15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,127+0,255) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001429 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{304} = (2,127 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0006617 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.8758 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 c;
M^{\text{X-15..-20}^{\circ}\text{C}}_{304} = (2,8758 + 0,255) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000025 \text{ m/cod};
G_{304} = (2.8758 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0008697 \ z/c;
M = 0.0002285 + 0.0001286 + 0.000294 + 0.0001429 + 0.000025 = 0.0008191 \text{ m/zod}
G = \max\{0.0001763; 0.0002977; 0.0004537; 0.0006617; 0.0008697\} = 0.0008697 
M'^{T}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.342 c;
M''^{\mathrm{T}}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \varepsilon;
M^{T}_{328} = (0.342 + 0.222) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.000203 \text{ m/zod};
G^{T}_{328} = (0.342 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0001567 \ z/c;
                                                                                                                                             Лист
                                                                          9035.1 - \Pi MOOC 3
```

 $M = 0.0012053 + 0.0010582 + 0.0029938 + 0.0015595 + 0.0002828 = 0.0070996 \,\text{m/zod};$

 $G = \max\{0.00062; 0.001633; 0.00308; 0.0048133; 0.0065467\} = 0.0065467 \ c/c.$

 $M'^{T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 2.3376 z;$

Экскаватор-погрузчик JCB 3CX

Согласовано

읟

NHB.

Взам.

Подпись и дата

Инв. № подл

21

```
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \epsilon;
M^{\Pi}_{328} = (2,2254 + 0,222) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0002937 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (2,2254 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0006798 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 4.626 \ \epsilon;
M''^{X}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X}_{328} = (4,626 + 0,222) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0008726 \text{ m/zod};
G^{X}_{328} = (4,626 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0013467 \ z/c;
M'^{X-10...15^{\circ}C}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 7.506 c;
M^{"X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,506+0,222) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004637 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{328} = (7,506 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0021467 \, c/c;
M'^{\text{X--15..-20°C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 10.386 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (10,386 + 0,222) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000849 \text{ m/zod};
G_{328} = (10,386 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0029467 \ z/c;
M = 0.000203 + 0.0002937 + 0.0008726 + 0.0004637 + 0.0000849 = 0.0019179 \text{ m/zod};
G = \max\{0.0001567; 0.0006798; 0.0013467; 0.0021467; 0.0029467\} = 0.0029467 \ c/c.
M'^{\mathrm{T}}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.405 \, \epsilon;
M''^{T}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{T}_{330} = (0.405 + 0.211) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002218 \text{ m/zod};
G^{T}_{330} = (0.405 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0001711 \ z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.8692 z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\Pi}_{330} = (0.8692 + 0.211) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001296 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.8692 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0003001 \, z/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 1.675 z;
M''^{X}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{X}_{330} = (1,675 + 0,211) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0003395 \text{ m/zod};
G^{X_{330}} = (1,675 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0005239 \ z/c;
M'^{X-10...15^{\circ}C}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 2.635 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,635+0,211) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001708 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,635 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0007906 \, \epsilon/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 3.595 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\text{X-15..-20}^{\circ}\text{C}}_{330} = (3,595 + 0,211) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000304 \text{ m/zod};
G_{330} = (3.595 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0010572 \ \epsilon/c;
M = 0.0002218 + 0.0001296 + 0.0003395 + 0.0001708 + 0.0000304 = 0.0008921  m/200;
G = \max\{0,0001711; 0,0003001; 0,0005239; 0,0007906; 0,0010572\} = 0,0010572 \ c/c.
M^{\prime T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 7.974 z;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \varepsilon;
M^{T}_{337} = (7.974 + 3.174) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0040133 \text{ m/zod};
G^{T}_{337} = (7.974 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0030967 \ z/c;
M'^{\Pi}_{337} = 4,32 \cdot 6 + 1,413 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 29,1678 \ \varepsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \, \epsilon;
M^{\Pi}_{337} = (29.1678 + 3.174) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.003881 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (29,1678 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0089838 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 60.942 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 z;
M^{X_{337}} = (60.942 + 3.174) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0115409 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\prime \Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 2.2254 \, \epsilon;$

22

 $9035.1 - \Pi MOOC 3$

```
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (99.342 + 3.174) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.006151 \text{ m/zod};
G^{\text{X-10..-15}\circ\text{C}}_{337} = (99.342 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0284767 \ c/c;
M'^{\text{X-15..-20°C}}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 137,742 \text{ c};
M''^{X-15...-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (137,742 + 3,174) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0011273 \text{ m/sod};
G_{337} = (137,742 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0391433 \ z/c;
M = 0.0040133 + 0.003881 + 0.0115409 + 0.006151 + 0.0011273 = 0.0267135  m/20\partial;
G = \max\{0.0030967; 0.0089838; 0.01781; 0.0284767; 0.0391433\} = 0.0391433 \ z/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 \ \epsilon/c.
M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 1.158 \, \varepsilon;
M''^{\mathrm{T}}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \, \epsilon;
M^{T}_{2732} = (1.158 + 0.558) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0006178 \text{ m/zod};
G^{T}_{2732} = (1,158 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0004767 \ z/c;
M'^{\Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 4.7874 z;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{\Pi}_{2732} = (4,7874 + 0,558) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0006414 \, \text{m/zod};
\mathbf{G}^{\Pi}_{2732} = (4,7874 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0014848 \, \epsilon/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 9.966 c
M''^{X}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{X}_{2732} = (9,966 + 0,558) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0018943 \text{ m/zod};
G^{X}_{2732} = (9,966 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0029233 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 16,206 \text{ z};
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,206+0,558) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010058 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,206 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0046567 \ c/c;
M'^{\text{X-15...20}^{\circ}\text{C}}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 22,446 \text{ } z;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
```

 $G^{X}_{337} = (60.942 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.01781 \ z/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 99.342 \ \varepsilon;$

23

```
M = 0.0006178 + 0.0006414 + 0.0018943 + 0.0010058 + 0.000184 = 0.0043434 \, \text{m/zod};
G = \max\{0.0004767; 0.0014848; 0.0029233; 0.0046567; 0.00639\} = 0.00639 \ \epsilon/c.
Бульдозер Komatsu D65
M^{\prime T}_{301} = 0.624 \cdot 2 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 5.7216 c;
M''^{T}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \epsilon;
M^{T}_{301} = (5,7216 + 4,4736) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0091757 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (5,7216 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,002832 \, z/c;
M'^{\Pi}_{301} = 0.936 \cdot 6 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 10.0896 \ \varepsilon;
M''^{\Pi}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \epsilon;
M^{\Pi}_{30I} = (10,0896 + 4,4736) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,004369 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (10,0896 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0040453 \, z/c;
M'^{X}_{301} = 0.936 \cdot 12 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 15,7056 c;
M''^{X}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \epsilon;
M^{X}_{30I} = (15,7056 + 4,4736) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0090806 \, \text{m/zod};
G^{X}_{301} = (15,7056 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0056053 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.936 \cdot 20 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 23.1936 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{301} = (23,1936+4,4736) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0041501 \text{ m/200};
G^{X-10..-15^{\circ}C}_{301} = (23,1936 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0076853 \ z/c;
M'^{X-15..-20^{\circ}C}_{301} = 0.936 \cdot 28 + 3.208 \cdot 0.1 / 5 \cdot 60 + 0.624 \cdot 1 = 30.6816 c;
M''^{X-15..-20^{\circ}C}_{301} = 3,208 \cdot 0,1 / 5 \cdot 60 + 0,624 \cdot 1 = 4,4736 \ \varepsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{30I} = (30,6816 + 4,4736) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0007031 \text{ m/cod};
G_{301} = (30,6816 \cdot 1 + 4,4736 \cdot 1) / 3600 = 0,0097653 \ z/c;
M = 0.0091757 + 0.004369 + 0.0090806 + 0.0041501 + 0.0007031 = 0.0274785  m/20\partial;
G = \max\{0.002832; 0.0040453; 0.0056053; 0.0076853; 0.0097653\} = 0.0097653  \epsilon/c.
M'^{\mathrm{T}}_{304} = 0.1014 \cdot 2 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.9294 \, \epsilon;
M''^{\mathrm{T}}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \ \varepsilon;
M^{T}_{304} = (0.9294 + 0.7266) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0014904 \, \text{m/zod};
G^{T}_{304} = (0.9294 \cdot 1 + 0.7266 \cdot 1) / 3600 = 0.00046 \ z/c;
M'^{\Pi}_{304} = 0.152 \cdot 6 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 1.6386 c;
M''^{\Pi}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \ \varepsilon;
M^{\Pi}_{304} = (1,6386 + 0,7266) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0007096 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (1,6386 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,000657 \, c/c;
M'^{X}_{304} = 0.152 \cdot 12 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 2.5506 z;
M''^{X}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 \ \varepsilon;
M^{X}_{304} = (2.5506 + 0.7266) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0014747 \text{ m/zod};
G^{X}_{304} = (2,5506 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0009103 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.152 \cdot 20 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 3.7666 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 0.7266 c;
M^{\text{X}-10...15^{\circ}\text{C}}_{304} = (3.7666 + 0.7266) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.000674 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (3,7666 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0012481 \ z/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{304} = 0.152 \cdot 28 + 0.521 \cdot 0.1 / 5 \cdot 60 + 0.1014 \cdot 1 = 4.9826 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0,521 \cdot 0,1 / 5 \cdot 60 + 0,1014 \cdot 1 = 0,7266 c;
M^{X-15...-20^{\circ}C}_{304} = (4.9826 + 0.7266) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0001142 \text{ m/200};
G_{304} = (4,9826 \cdot 1 + 0,7266 \cdot 1) / 3600 = 0,0015859 \ z/c;
M = 0.0014904 + 0.0007096 + 0.0014747 + 0.000674 + 0.0001142 = 0.0044629 \text{ m/zod};
G = \max\{0.00046; 0.000657; 0.0009103; 0.0012481; 0.0015859\} = 0.0015859 \ \epsilon/c.
M'^{T}_{328} = 0.1 \cdot 2 + 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.84 \ \varepsilon;
M''^{\mathrm{T}}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M^{\text{X}-15...20^{\circ}\text{C}}_{2732} = (22,446+0,558) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000184 \text{ m/200};$

 $G_{2732} = (22,446 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.00639 \ \epsilon/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

24

```
M'^{\Pi}_{328} = 0.54 \cdot 6 + 0.603 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 4.0636 \, \epsilon;
M''^{\Pi}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 c;
M^{\Pi}_{328} = (4,0636 + 0,64) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0014111 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (4,0636 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0013066 \, \epsilon/c;
M'^{X}_{328} = 0.6 \cdot 12 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 8.104 z;
M''^{X}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 c;
M^{X}_{328} = (8,104+0,64) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0039348 \text{ m/zod};
G^{X}_{328} = (8,104 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0024289 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 0.6 \cdot 20 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 12,904 z;
M''^{X-10..-15^{\circ}C}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (12,904+0,64) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0020316 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (12,904 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0037622 \ z/c;
M'^{X-15..-20^{\circ}C}_{328} = 0.6 \cdot 28 + 0.67 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 17,704 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.45 \cdot 0.1 / 5 \cdot 60 + 0.1 \cdot 1 = 0.64 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (17,704+0,64) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0003669 \text{ m/zod};
G_{328} = (17,704 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0050956 \, \epsilon/c;
M = 0.001332 + 0.0014111 + 0.0039348 + 0.0020316 + 0.0003669 = 0.0090764  m/200;
G = \max\{0,0004111; 0,0013066; 0,0024289; 0,0037622; 0,0050956\} = 0,0050956  c/c.
M'^{\mathrm{T}}_{330} = 0.16 \cdot 2 + 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.852 \, \varepsilon;
M''^{\mathrm{T}}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \ \varepsilon;
M^{T}_{330} = (0.852 + 0.532) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0012456 \text{ m/zod};
G^{T}_{330} = (0.852 \cdot 1 + 0.532 \cdot 1) / 3600 = 0.0003844 \, c/c;
M'^{\Pi}_{330} = 0.18 \cdot 6 + 0.342 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 1.6504 z;
M''^{\Pi}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \, \varepsilon;
M^{\Pi}_{330} = (1,6504 + 0,532) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0006547 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (1,6504 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,0006062 \, \epsilon/c;
M'^{X}_{330} = 0.2 \cdot 12 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 3.016 z;
M''^{X}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \ \epsilon;
M^{X}_{330} = (3.016 + 0.532) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0015966 \text{ m/zod};
G^{X}_{330} = (3,016 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,0009856 \ z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.2 \cdot 20 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 4.616 c;
M''^{X-10..-15^{\circ}C}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 z;
M^{X-10..-15^{\circ}C}_{330} = (4,616+0,532) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0007722 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (4,616 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,00143 \ z/c;
M'^{\text{X-15..-20°C}}_{330} = 0.2 \cdot 28 + 0.38 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 6.216 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 0.1 / 5 \cdot 60 + 0.16 \cdot 1 = 0.532 \ \epsilon;
M^{\text{X}-15...-20^{\circ}\text{C}}_{330} = (6.216 + 0.532) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.000135 \text{ m/zod};
G_{330} = (6,216 \cdot 1 + 0,532 \cdot 1) / 3600 = 0,0018744 \, \epsilon/c;
M = 0.0012456 + 0.0006547 + 0.0015966 + 0.0007722 + 0.000135 = 0.0044041 \, \text{m/zod};
G = \max\{0.0003844; 0.0006062; 0.0009856; 0.00143; 0.0018744\} = 0.0018744 \ z/c.
M'^{T}_{337} = 3.9 \cdot 2 + 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 14.218 \ \epsilon;
M''^{\mathrm{T}}_{337} = 2,09 \cdot 0,1 / 5 \cdot 60 + 3,91 \cdot 1 = 6,418 \ \epsilon;
M^{T}_{337} = (14,218 + 6,418) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0185724 \text{ m/zod};
G^{T}_{337} = (14,218 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0057322 \, c/c;
M'^{\Pi}_{337} = 7.02 \cdot 6 + 2.295 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 48.784 z;
M''^{\Pi}_{337} = 2,09 \cdot 0,1 / 5 \cdot 60 + 3,91 \cdot 1 = 6,418 \ \epsilon;
M^{\Pi}_{337} = (48.784 + 6.418) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0165606 \, \text{m/zod};
G^{\Pi}_{337} = (48,784 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0153339 \, z/c;
M'^{X}_{337} = 7.8 \cdot 12 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 100.57 \ \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M^{T}_{328} = (0.84 + 0.64) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.001332 \text{ m/zod};$ $G^{T}_{328} = (0.84 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0004111 \text{ z/c};$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

25

```
M^{X_{337}} = (100.57 + 6.418) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0481446 \text{ m/zod};
G^{X}_{337} = (100.57 \cdot 1 + 6.418 \cdot 1) / 3600 = 0.0297189 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{337} = 7.8 \cdot 20 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 162.97 z;
M''^{X-10..-15^{\circ}C}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (162.97 + 6.418) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0254082 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (162.97 \cdot 1 + 6.418 \cdot 1) / 3600 = 0.0470522 \, c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 7.8 \cdot 28 + 2.55 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 225.37 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{337} = 2,09 \cdot 0,1 / 5 \cdot 60 + 3,91 \cdot 1 = 6,418 \ \epsilon;
M^{\text{X-15..-20°C}}_{337} = (225,37 + 6,418) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0046358 \text{ m/zod};
G_{337} = (225,37 \cdot 1 + 6,418 \cdot 1) / 3600 = 0,0643856  z/c;
M = 0.0185724 + 0.0165606 + 0.0481446 + 0.0254082 + 0.0046358 = 0.1133216  m/200;
G = \max\{0.0057322; 0.0153339; 0.0297189; 0.0470522; 0.0643856\} = 0.0643856 \ \epsilon/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 2;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.49 \cdot 2 + 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 2.322 \, \epsilon;
M''^{T}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 c;
M^{T}_{2732} = (2.322 + 1.342) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0032976 \text{ m/zod};
G^{T}_{2732} = (2,322 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0010178 \, \epsilon/c;
M'^{\Pi}_{2732} = 1,143 \cdot 6 + 0,765 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 8,266 c;
M''^{\Pi}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 c;
M^{\Pi}_{2732} = (8.266 + 1.342) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0028824 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (8,266 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0026689 \, \epsilon/c;
M'^{X}_{2732} = 1,27 \cdot 12 + 0,85 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 16,75 \ \epsilon;
M''^{X}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 c;
M^{X}_{2732} = (16.75 + 1.342) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0081414 \text{ m/zod};
G^{X}_{2732} = (16,75 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,0050256 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 1,27 \cdot 20 + 0,85 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 26,91 \text{ c};
M''^{X-10..-15^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (26.91 + 1.342) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0042378 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (26.91 \cdot 1 + 1.342 \cdot 1) / 3600 = 0.0078478 \ c/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{X}_{337} = 2.09 \cdot 0.1 / 5 \cdot 60 + 3.91 \cdot 1 = 6.418 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

26

```
G = \max\{0.0010178; 0.0026689; 0.0050256; 0.0078478; 0.01067\} = 0.01067 \ z/c.
Бульдозер ДЗ-42
M'^{T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 3.5232 c;
M''^{\mathrm{T}}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \, \varepsilon;
M^{T}_{301} = (3,5232 + 2,7552) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0033903 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{301} = (3,5232 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,001744 \, \varepsilon/c;
M^{\prime \Pi_{301}} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 6.2112 c;
M''^{\Pi}_{30I} = 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 2.7552 \ \epsilon;
M^{\Pi}_{30I} = (6,2112 + 2,7552) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,001614 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (6,2112 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0024907 \, \epsilon/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 9.6672 z;
M''^{X}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{X_{301}} = (9,6672 + 2,7552) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,003354 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (9.6672 \cdot 1 + 2.7552 \cdot 1) / 3600 = 0.0034507 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 14,2752 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{X-10..-15^{\circ}C}_{30I} = (14,2752 + 2,7552) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0015327 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (14,2752 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0047307 \ e/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 18.8832 \text{ } z;
M''^{X-15...-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \, \epsilon;
M^{X-15...20^{\circ}C}_{30I} = (18,8832 + 2,7552) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0002597 \text{ m/zod};
G_{301} = (18,8832 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0060107 \ z/c;
M = 0.0033903 + 0.001614 + 0.003354 + 0.0015327 + 0.0002597 = 0.0101507 \text{ m/zod};
G = \max\{0.001744; 0.0024907; 0.0034507; 0.0047307; 0.0060107\} = 0.0060107 \ c/c.
M'^{\mathrm{T}}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.5724 \, \epsilon;
M''^{T}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{T}_{304} = (0.5724 + 0.4476) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0005508 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.5724 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0002833 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.0092 c;
M^{\prime\prime}\Pi_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \varepsilon;
\mathbf{M}^{\Pi}_{304} = (1,0092 + 0,4476) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0002622 \, \text{m/zod};
G^{\Pi}_{304} = (1,0092 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0004047 \ z/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.5708 c;
M''^{X}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{X}_{304} = (1,5708 + 0,4476) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,000545 \text{ m/zod};
\mathbf{G}^{X}_{304} = (1,5708 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0005607 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 2.3196 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,3196 + 0,4476) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,000249 \text{ m/zod};
\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,3196 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0007687 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0,0936 \cdot 28 + 0,321 \cdot 0,1 / 5 \cdot 60 + 0,0624 \cdot 1 = 3,0684 \text{ c};
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (3,0684 + 0,4476) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0000422 \text{ m/zod};
G_{304} = (3,0684 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0009767 \ z/c;
M = 0.0005508 + 0.0002622 + 0.000545 + 0.000249 + 0.0000422 = 0.0016492 \text{ m/zod};
G = \max\{0.0002833; 0.0004047; 0.0005607; 0.0007687; 0.0009767\} = 0.0009767 \ c/c.
```

 $9035.1 - \Pi MOOC 3$

 $M'^{X-15..-20^{\circ}C}_{2732} = 1,27 \cdot 28 + 0,85 \cdot 0,1 / 5 \cdot 60 + 0,49 \cdot 1 = 37,07 \ \varepsilon;$

M = 0.0032976 + 0.0028824 + 0.0081414 + 0.0042378 + 0.0007682 = 0.0193274 m/200;

 $M^{\text{X}-15...20^{\circ}\text{C}}_{2732} = (37.07 + 1.342) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0007682 \text{ m/zod};$

 $M''^{X-15...20^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 5 \cdot 60 + 0.49 \cdot 1 = 1.342 z;$

 $G_{2732} = (37,07 \cdot 1 + 1,342 \cdot 1) / 3600 = 0,01067 \ \epsilon/c;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

27

```
G^{T}_{328} = (0.504 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.0002467 \ z/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 2.4468 \ \varepsilon;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{\Pi}_{328} = (2,4468 + 0,384) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0005095 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (2,4468 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,0007863 \, \epsilon/c;
M^{\prime X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 4.872 \ \varepsilon;
M''^{X}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X}_{328} = (4.872 + 0.384) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0014191 \text{ m/zod};
G^{X}_{328} = (4.872 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.00146 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 7.752 z;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;
M^{X-10..-15^{\circ}C}_{328} = (7,752+0,384) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0007322 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (7,752 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00226 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 10.632 \text{ c};
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X-15...20^{\circ}C}_{328} = (10.632 + 0.384) \cdot 4 \cdot 3 \cdot 10^{-6} = 0.0001322 \, \text{m/cod};
G_{328} = (10,632 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00306 \ \epsilon/c;
M = 0.0004795 + 0.0005095 + 0.0014191 + 0.0007322 + 0.0001322 = 0.0032726 \,\text{m/zod};
G = \max\{0.0002467; 0.0007863; 0.00146; 0.00226; 0.00306\} = 0.00306 \ \epsilon/c.
M'^{T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.519 z;
M''^{\mathrm{T}}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{T}_{330} = (0.519 + 0.325) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0004558 \text{ m/zod};
G^{T}_{330} = (0.519 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0002344 \ z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.9934 z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{\Pi_{330}} = (0.9934 + 0.325) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0002373 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.9934 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0003662 \, \epsilon/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 1.813 z;
M''^{X}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{X}_{330} = (1.813 + 0.325) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0005773 \text{ m/zod};
G^{X}_{330} = (1.813 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0005939 \ z/c;
M'^{X-10...15^{\circ}C}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 2.773 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{\text{X-}10..-15^{\circ}\text{C}}_{330} = (2,773 + 0,325) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0002788 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,773 \cdot 1 + 0,325 \cdot 1) / 3600 = 0,0008606 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 3.733 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3,733+0,325) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0000487 \text{ m/200};
G_{330} = (3,733 \cdot 1 + 0,325 \cdot 1) / 3600 = 0,0011272 \ \epsilon/c;
M = 0.0004558 + 0.0002373 + 0.0005773 + 0.0002788 + 0.0000487 = 0.0015978  m/200;
G = \max\{0,0002344; 0,0003662; 0,0005939; 0,0008606; 0,0011272\} = 0,0011272 \ \epsilon/c.
M'^{\mathrm{T}}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 8.748 \ \varepsilon;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \varepsilon;
M^{T}_{337} = (8.748 + 3.948) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0068558 \, \text{m/zod};
G^{T}_{337} = (8,748 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0035267 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 30.0156 c;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \varepsilon;
M^{\Pi}_{337} = (30,0156 + 3,948) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0061134 \, \text{m/zod};
```

 $9035.1 - \Pi MOOC 3$

 $M'^{\mathrm{T}}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.504 \, \epsilon;$

 $M^{T}_{328} = (0.504 + 0.384) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0004795 \text{ m/zod};$

 $M''^{T}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

28

```
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 61.884 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ z;
M^{X_{337}} = (61.884 + 3.948) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0177746 \text{ m/zod};
G^{X}_{337} = (61,884 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0182867 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 100.284 \text{ z};
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (100,284+3,948) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0093809 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (100,284 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0289533 \ e/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 138,684 \text{ z};
M''^{X-15...-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (138,684 + 3,948) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0017116 \text{ m/200};
G_{337} = (138.684 \cdot 1 + 3.948 \cdot 1) / 3600 = 0.03962 \ z/c;
M = 0.0068558 + 0.0061134 + 0.0177746 + 0.0093809 + 0.0017116 = 0.0418364  m/200;
G = \max\{0.0035267; 0.0094343; 0.0182867; 0.0289533; 0.03962\} = 0.03962 \ \epsilon/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 3 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 3 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0  2;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 3 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200}:
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{T}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 1.416 \ \epsilon;
M''^{T}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 z;
M^{T}_{2732} = (1,416 + 0.816) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0012053 \text{ m/zod};
G^{T}_{2732} = (1,416 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.00062 \ \epsilon/c;
M'^{\Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 5.0628 \, \epsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 c;
M^{\Pi}_{2732} = (5,0628 + 0,816) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0010582 \text{ m/sod};
\mathbf{G}^{\Pi}_{2732} = (5,0628 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,001633 \ \epsilon/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 10.272 z;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 z;
M^{X}_{2732} = (10,272 + 0,816) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,0029938 \, \text{m/zod};
G^{X}_{2732} = (10,272 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00308 \ z/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 16.512 c;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 z;
```

 $9035.1 - \Pi MOOC 3$

 $G^{\Pi}_{337} = (30,0156 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0094343 \ z/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

29

```
G_{2732} = (22,752 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.0065467 \, e/c;
M = 0.0012053 + 0.0010582 + 0.0029938 + 0.0015595 + 0.0002828 = 0.0070996  m/20\partial;
G = \max\{0.00062; 0.001633; 0.00308; 0.0048133; 0.0065467\} = 0.0065467 \ c/c.
Автогрейдер ДЗ-122
M^{\prime T}_{30I} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 \ \varepsilon;
M''^{T}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{T}_{301} = (9.2592 + 7.2272) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0059351 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \, \epsilon/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \epsilon;
M''^{\Pi}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\Pi}_{30I} = (16,3952 + 7,2272) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0028347 \text{ m/sod};
\mathbf{G}^{\Pi}_{301} = (16,3952 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 c;
M''^{X}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \epsilon;
M^{X}_{30I} = (25,5632 + 7,2272) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0059023 \text{ m/zod};
\mathbf{G}^{X}_{301} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{30I} = (37,7872 + 7,2272) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0027009 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{30I} = (37,7872 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,012504 \, z/c;
M'^{X-15..-20^{\circ}C}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 c;
M''^{X-15...20^{\circ}C}_{30I} = 5.176 \cdot 0.1 / 5 \cdot 60 + 1.016 \cdot 1 = 7.2272 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{301} = (50,0112 + 7,2272) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0004579 \text{ m/zod};
G_{301} = (50,0112 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0158996  z/c;
M = 0.0059351 + 0.0028347 + 0.0059023 + 0.0027009 + 0.0004579 = 0.0178308 \, \text{m/zod};
G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996 \ \epsilon/c.
M'^{\mathrm{T}}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 \, \varepsilon;
M''^{T}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{\mathrm{T}}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0009642 \, \text{m/zod};
G^{T}_{304} = (1,5042 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,000744     z/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 z;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{\Pi}_{304} = (2.664 + 1.1742) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0004606 \, \text{m/zod};
G^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \ z/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 z;
M''^{X}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{X_{304}} = (4.1538 + 1.1742) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.000959 \text{ m/zod};
\mathbf{G}^{X}_{304} = (4,1538 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,00148 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (6,1402+1,1742) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004389 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{X-15..-20^{\circ}C}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 c;
M''^{X-15...-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{X-15...20^{\circ}C}_{304} = (8,1266+1,1742) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000744 \text{ m/200};
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

 $\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,512 + 0,816) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0015595 \text{ m/zod};$ $\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,512 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,0048133 \text{ z/c};$ $\mathbf{M}^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 0,78 \cdot 28 + 0,51 \cdot 0,1 / 5 \cdot 60 + 0,3 \cdot 1 = 22,752 \text{ z};$

 $M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,752+0,816) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0002828 \text{ m/zod};$

 $M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 z;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

30

```
M^{T}_{328} = (1,374 + 1,034) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0008669 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ \epsilon/c;
M^{\prime \Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 c;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0009454 \, \text{m/200};
G^{\Pi}_{328} = (6.8444 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0021884 \, z/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 13,706 \ \varepsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{X_{328}} = (13.706 + 1.034) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0026532 \text{ m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 21,866 c;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{X-10..-15^{\circ}C}_{328} = (21,866+1,034) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,001374 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611  z/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0002485 \text{ m/sod};
G_{328} = (30,026 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0086278 \, z/c;
M = 0.0008669 + 0.0009454 + 0.0026532 + 0.001374 + 0.0002485 = 0.006088 \, \text{m/zod};
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278  \epsilon/c.
M'^{\mathrm{T}}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 \ \varepsilon;
M''^{\mathrm{T}}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \varepsilon;
M^{T}_{330} = (1,362 + 0,862) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0008006 \text{ m/zod};
G^{T}_{330} = (1,362 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0006178 \ z/c;
M'^{\Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 z;
M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\Pi}_{330} = (2,6044 + 0,862) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,000416 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \ \epsilon/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 4.726 c;
M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{X}_{330} = (4.726 + 0.862) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0010058 \text{ m/zod};
G^{X}_{330} = (4,726 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.0015522 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 \text{ c};
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (7,206+0,862) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004841 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{330} = (9.686 + 0.862) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000844 \text{ m/zod};
G_{330} = (9,686 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,00293 \ z/c;
M = 0.0008006 + 0.000416 + 0.0010058 + 0.0004841 + 0.0000844 = 0.0027909 \, \text{m/zod};
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293 \ c/c.
M^{\prime}^{T}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 z;
M''^{\mathrm{T}}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \, \epsilon;
M^{T}_{337} = (22,954 + 10,354) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0119909 \text{ m/zod};
M'^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \ \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

M = 0,0009642 + 0,0004606 + 0,000959 + 0,0004389 + 0,0000744 = 0,0028971 m/200; $G = \max\{0,000744; 0,0010662; 0,00148; 0,0020318; 0,0025836\} = 0,0025836$ z/c.

 $M'^{\mathrm{T}}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 \, \epsilon;$

 $M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \, \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

31

```
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{\Pi_{337}} = (78,7888 + 10,354) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0106971 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (78,7888 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0247619 \ z/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 z;
M''^{X}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0311033 \text{ m/zod};
G^{X_{337}} = (162,442 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0479989 \ z/c;
M'^{X-10...15^{\circ}C}_{337} = 12,6 \cdot 20 + 4,11 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 263,242 c;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (263,242 + 10,354) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0164158 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ e/c;
M'^{X-15..-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 c;
M''^{X-15..-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \,\epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (364,042+10,354) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0029952 \text{ m/zod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0119909 + 0.0106971 + 0.0311033 + 0.0164158 + 0.0029952 = 0.0732022 \, \text{m/zod};
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ \epsilon/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M^{\prime \Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 \, \epsilon;
M''^{\mathrm{T}}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \, \varepsilon;
M^{T}_{2732} = (3.738 + 2.158) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0021226 \text{ m/zod};
G^{T}_{2732} = (3.738 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.0016378 \, e/c;
M'^{\Pi}_{2732} = 1,845 \cdot 6 + 1,233 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 13,3396 \ \epsilon;
M''^{\Pi}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 c;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0018597 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13.3396 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.0043049 \, \epsilon/c;
M'^{X}_{2732} = 2,05 \cdot 12 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 27,034 c;
M''^{X}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 c;
M^{X}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0052546 \text{ m/zod};
\mathbf{G}^{X}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \ \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

32

```
G^{X-10..-15^{\circ}C}_{2732} = (43,434 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0126644 z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 z;
M^{\text{X-15..-20}^{\circ}\text{C}}_{2732} = (59,834 + 2,158) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0004959 \text{ m/zod};
G_{2732} = (59.834 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.01722 \ z/c;
M = 0.0021226 + 0.0018597 + 0.0052546 + 0.0027355 + 0.0004959 = 0.0124683 \, \text{m/zod};
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ z/c.
Кран на спецшасси Liebherr LTM 1500-8.1
M'^{T}_{301} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 \ \epsilon;
M''^{T}_{301} = 5.176 \cdot 0.1 / 5 \cdot 60 + 1.016 \cdot 1 = 7.2272 \ \epsilon;
M^{T}_{301} = (9,2592 + 7,2272) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0029676 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \, \varepsilon/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \epsilon;
M^{\prime\prime}^{\Pi}_{30I} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\Pi}_{301} = (16,3952 + 7,2272) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0014173 \text{ m/zod};
\mathbf{G}^{\Pi}_{30I} = (16.3952 \cdot 1 + 7.2272 \cdot 1) / 3600 = 0.0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 c;
M''^{X}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
\mathbf{M}^{\mathbf{X}}_{301} = (25,5632 + 7,2272) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0029511 \text{ m/zod};
G^{X_{301}} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \ z/c;
M'^{X-10..-15^{\circ}C}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{30I} = (37,7872 + 7,2272) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0013504 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (37.7872 \cdot 1 + 7.2272 \cdot 1) / 3600 = 0.012504 \, z/c;
M'^{X-15..-20^{\circ}C}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 \ \epsilon;
M''^{X-15...-20^{\circ}C}_{30I} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{X-15...20^{\circ}C}_{30I} = (50,0112 + 7,2272) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,000229 \text{ m/sod};
G_{301} = (50,0112 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0158996 \ z/c;
M = 0.0029676 + 0.0014173 + 0.0029511 + 0.0013504 + 0.000229 = 0.0089154  m/20\partial;
G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996 \ z/c.
M^{\prime T}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 c;
M''^{T}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 z;
M^{T}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0004821 \text{ m/zod};
G^{T}_{304} = (1,5042 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,000744 \ z/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 c;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\Pi}_{304} = (2,664 + 1,1742) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0002303 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \, \epsilon/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 \ \varepsilon;
M''^{X}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{X}_{304} = (4,1538 + 1,1742) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0004795 \, \text{m/zod};
G^{X}_{304} = (4,1538 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,00148 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 \text{ } z;
M^{"X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (6,1402+1,1742) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0002194 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 2.05 \cdot 20 + 1.37 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 43.434 \text{ z};$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (43,434+2,158) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0027355 \text{ m/zod};$

 $M''^{X-10..-15^{\circ}C}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;$

33

```
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
M = 0.0004821 + 0.0002303 + 0.0004795 + 0.0002194 + 0.0000372 = 0.0014486 \, \text{m/zod};
G = \max\{0.000744; 0.0010662; 0.00148; 0.0020318; 0.0025836\} = 0.0025836 \ z/c.
M'^{\mathrm{T}}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 \, \epsilon;
M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \varepsilon;
M^{T}_{328} = (1,374 + 1,034) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0004334 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ z/c;
M'^{\Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 c;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0004727 \, \text{m/zod};
\mathbf{G}^{\Pi}_{328} = (6.8444 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0021884 \, \epsilon/c;
M'^{X}_{328} = 1.02 \cdot 12 + 1.08 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 13,706 \, \epsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{X}_{328} = (13,706 + 1,034) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0013266 \text{ m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 21,866 c;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (21,866 + 1,034) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,000687 \text{ m/sod};
\mathbf{G}^{X-10..-15^{\circ}C}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611 \ c/c;
M'^{X-15..-20^{\circ}C}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 c;
M''^{X-15...-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0001242 \text{ m/zod};
G_{328} = (30,026 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0086278 \ z/c;
M = 0.0004334 + 0.0004727 + 0.0013266 + 0.000687 + 0.0001242 = 0.003044 \, m/cod;
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278 \ c/c.
M'^{T}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 c
M''^{\mathrm{T}}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \varepsilon;
M^{T}_{330} = (1,362 + 0,862) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0004003 \text{ m/zod};
G^{T}_{330} = (1,362 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0006178 \ z/c;
M^{\prime \Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 \, \epsilon;
M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\Pi}_{330} = (2,6044 + 0,862) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,000208 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \, \epsilon/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 4,726 \ \epsilon;
M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{X}_{330} = (4,726 + 0,862) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0005029 \text{ m/zod};
G^{X}_{330} = (4.726 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.0015522 \ z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 c;
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (7,206 + 0,862) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,000242 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 c;
M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (9,686 + 0,862) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000422 \text{ m/zod};
G_{330} = (9.686 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.00293 \ z/c;
M = 0.0004003 + 0.000208 + 0.0005029 + 0.000242 + 0.0000422 = 0.0013955  m/20\partial;
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293  \epsilon/c.
M'^{\mathrm{T}}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 \, \epsilon;
M''^{\mathrm{T}}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \, \epsilon;
M^{T}_{337} = (22.954 + 10.354) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0059954 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (8,1266+1,1742) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000372 \text{ m/200};$

34

```
M'^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \ \varepsilon;
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 c;
M^{\Pi}_{337} = (78,7888 + 10,354) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0053486 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (78,7888 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0247619 \, \epsilon/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 z;
M''^{X}_{337} = 3,37 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 10,354 z;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0155516 \text{ m/zod};
\mathbf{G}^{X}_{337} = (162,442 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0479989 \, \epsilon/c;
M'^{X-10...15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 263.242 c;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{X-10..-15^{\circ}C}_{337} = (263,242+10,354) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0082079 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ c/c;
M'^{X-15..-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 c;
M''^{X-15...-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (364,042 + 10,354) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0014976 \text{ m/zod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0059954 + 0.0053486 + 0.0155516 + 0.0082079 + 0.0014976 = 0.0366011 \text{ m/zod};
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ \epsilon/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 1 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 1 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M^{rX-10...-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15°C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 1 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \frac{2}{c}
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/sod};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M^{\prime}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 c;
M''^{T}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \epsilon;
M^{\mathrm{T}}_{2732} = (3,738 + 2,158) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0010613 \, \text{m/zod};
G^{T}_{2732} = (3,738 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0016378 \ z/c;
M'^{\Pi}_{2732} = 1.845 \cdot 6 + 1.233 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 13.3396 \, \epsilon;
M''^{\Pi}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0009299 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13,3396 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0043049 \, \epsilon/c;
M'^{X}_{2732} = 2,05 \cdot 12 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 27,034 c;
M''^{X}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $\mathbf{G}^{\mathrm{T}}_{337} = (22.954 \cdot 1 + 10.354 \cdot 1) / 3600 = 0.0092522 \, \varepsilon/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

35

```
M^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (43,434 + 2,158) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0013678 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (43,434 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0126644 \, z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 c;
M''^{X-15..-20^{\circ}C}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 z;
M^{\text{X-15...20°C}}_{2732} = (59,834 + 2,158) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,000248 \text{ m/200};
G_{2732} = (59,834 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,01722 \ e/c;
M = 0.0010613 + 0.0009299 + 0.0026273 + 0.0013678 + 0.000248 = 0.0062341  m/200;
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ \epsilon/c.
Кран на спецшасси Liebherr LTM 1080/1
M'^{\mathrm{T}}_{301} = 1.6 \cdot 2 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 14.5456 \, \epsilon;
M''^{\mathrm{T}}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \epsilon;
M^{T}_{301} = (14,5456 + 11,3456) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0093208 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (14,5456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,007192 \, \varepsilon/c;
M'^{\Pi}_{301} = 2.4 \cdot 6 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 25.7456 c;
M''^{\Pi}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \epsilon;
M^{\Pi}_{30I} = (25,7456 + 11,3456) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0044509 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (25,7456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0103031 \, z/c;
M'^{X}_{301} = 2.4 \cdot 12 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 40.1456 z;
M''^{X}_{301} = 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 11.3456 z;
\mathbf{M}^{X}_{30I} = (40,1456 + 11,3456) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0092684 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (40,1456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0143031 \, z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 2,4 \cdot 20 + 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 59,3456 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{30I} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (59,3456 + 11,3456) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0042415 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (59.3456 \cdot 1 + 11.3456 \cdot 1) / 3600 = 0.0196364 \text{ z/c};
M'^{X-15..-20^{\circ}C}_{301} = 2,4 \cdot 28 + 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 78,5456 c;
M''^{X-15..-20^{\circ}C}_{30I} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{30I} = (78,5456 + 11,3456) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0007191 \text{ m/zod};
G_{301} = (78,5456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0249698 \ z/c;
M = 0.0093208 + 0.0044509 + 0.0092684 + 0.0042415 + 0.0007191 = 0.0280008 \, \text{m/zod};
G = \max\{0.007192; 0.0103031; 0.0143031; 0.0196364; 0.0249698\} = 0.0249698 
M'^{\mathrm{T}}_{304} = 0.26 \cdot 2 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 2.3639 \, \epsilon;
M''^{T}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \varepsilon;
M^{T}_{304} = (2.3639 + 1.8439) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0015148 \text{ m/zod};
M'^{\Pi}_{304} = 0.39 \cdot 6 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 4.1839 z;
M''^{\Pi}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \varepsilon;
M^{\Pi}_{304} = (4.1839 + 1.8439) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0007233 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (4.1839 \cdot 1 + 1.8439 \cdot 1) / 3600 = 0.0016744 \, \epsilon/c;
M'^{X}_{304} = 0.39 \cdot 12 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 6.5239 \ \epsilon;
M''^{X}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \epsilon;
M^{X}_{304} = (6.5239 + 1.8439) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0015062 \text{ m/zod};
\mathbf{G}^{X}_{304} = (6,5239 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0023244 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.39 \cdot 20 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 9.6439 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (9,6439 + 1,8439) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0006893 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (9,6439 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0031911 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

 $\mathbf{M}^{\mathbf{X}}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0026273 \text{ m/zod};$ $\mathbf{G}^{\mathbf{X}}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \text{ z/c};$

 $M''^{X-10..-15^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 2.05 \cdot 20 + 1.37 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 43.434 \text{ z};$

36

```
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (12,7639 + 1,8439) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001169 \text{ m/zod};
G_{304} = (12,7639 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0040577 \ z/c;
M = 0.0015148 + 0.0007233 + 0.0015062 + 0.0006893 + 0.0001169 = 0.0045505 \, \text{m/zod};
G = \max\{0.0011688; 0.0016744; 0.0023244; 0.0031911; 0.0040577\} = 0.0040577 \ c/c.
M'^{\mathrm{T}}_{328} = 0.26 \cdot 2 + 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 2.136 \, \epsilon;
M''^{\mathrm{T}}_{328} = 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 1.616 \, \epsilon;
M^{T}_{328} = (2,136 + 1,616) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0013507 \text{ m/zod};
G^{T}_{328} = (2,136 \cdot 1 + 1,616 \cdot 1) / 3600 = 0,0010422 \ z/c;
M^{\prime \Pi}_{328} = 1,404 \cdot 6 + 1,53 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 10,52 \ \epsilon;
M''^{\Pi}_{328} = 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 1.616 \ \epsilon;
M^{\Pi}_{328} = (10.52 + 1.616) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0014563 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (10.52 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0033711 \, \epsilon/c;
M'^{X}_{328} = 1,56 \cdot 12 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 21,02 \ \varepsilon;
M''^{X}_{328} = 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 1.616 c;
M^{X}_{328} = (21,02 + 1,616) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0040745 \text{ m/zod};
G^{X}_{328} = (21,02 \cdot 1 + 1,616 \cdot 1) / 3600 = 0,0062878 \ z/c;
M'^{X-10...-15^{\circ}C}_{328} = 1,56 \cdot 20 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 33,5 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{328} = 1,13 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 1,616 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (33.5 + 1.616) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.002107 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (33.5 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0097544 \ z/c;
M'^{X-15..-20^{\circ}C}_{328} = 1,56 \cdot 28 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 45,98 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 1{,}13 \cdot 0{,}1 / 5 \cdot 60 + 0{,}26 \cdot 1 = 1{,}616 \varepsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{328} = (45.98 + 1.616) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0003808 \text{ m/zod};
G_{328} = (45.98 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0132211 \ z/c;
M = 0.0013507 + 0.0014563 + 0.0040745 + 0.002107 + 0.0003808 = 0.0093692 \text{ m/zod};
G = \max\{0.0010422; 0.0033711; 0.0062878; 0.0097544; 0.0132211\} = 0.0132211 \ c/c.
M'^{\mathrm{T}}_{330} = 0.26 \cdot 2 + 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.87 \ \varepsilon;
M''^{\mathrm{T}}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 \ \epsilon;
M^{T}_{330} = (1.87 + 1.35) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0011592 \text{ m/zod};
G^{T}_{330} = (1.87 \cdot 1 + 1.35 \cdot 1) / 3600 = 0.0008944 \, e/c;
M^{\Pi}_{330} = 0.288 \cdot 6 + 0.882 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 3.1764 \, c;
M''^{\Pi}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 z;
M^{\Pi_{330}} = (3,1764 + 1,35) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0005432 \, \text{m/zod};
\mathbf{G}^{\Pi}_{330} = (3,1764 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0012573 \, c/c;
M'^{X}_{330} = 0.32 \cdot 12 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 5.406 c;
M''^{X}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 \ \epsilon;
M^{X}_{330} = (5,406 + 1,35) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0012161 \text{ m/zod};
G^{X}_{330} = (5,406 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0018767 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.32 \cdot 20 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 7.966 c;
M''^{X-10..-15^{\circ}C}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (7,966+1,35) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,000559 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (7,966 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0025878 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.32 \cdot 28 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 10.526 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (10,526+1,35) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000095 \text{ m/zod};
G_{330} = (10,526 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0032989 \ z/c;
M = 0.0011592 + 0.0005432 + 0.0012161 + 0.000559 + 0.000095 = 0.0035724  m/20\partial;
G = \max\{0.0008944; 0.0012573; 0.0018767; 0.0025878; 0.0032989\} = 0.0032989 \ \epsilon/c.
M'^{T}_{337} = 9.9 \cdot 2 + 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 36.08 \ \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.39 \cdot 28 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 12.7639 \, \epsilon;$

 $M''^{X-15..-20^{\circ}C}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \epsilon;$

37

```
M^{T}_{337} = (36.08 + 16.28) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0188496 \text{ m/zod};
G^{T}_{337} = (36.08 \cdot 1 + 16.28 \cdot 1) / 3600 = 0.0145444 \, z/c;
M'^{\Pi}_{337} = 16.92 \cdot 6 + 5.823 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 118.4276 z;
M''^{\Pi}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{\Pi}_{337} = (118,4276 + 16,28) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0161649 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (118,4276 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,0374188 \, \epsilon/c;
M'^{X}_{337} = 18.8 \cdot 12 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 243.284 z;
M''^{X}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 z;
M^{X}_{337} = (243,284 + 16,28) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0467215 \text{ m/zod};
G^{X}_{337} = (243,284 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,0721011  z/c;
M'^{X-10..-15^{\circ}C}_{337} = 18.8 \cdot 20 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 393.684 z;
M''^{X-10..-15^{\circ}C}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (393,684 + 16,28) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0245978 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (393,684 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,1138789 \ c/c;
M'^{X-15..-20^{\circ}C}_{337} = 18.8 \cdot 28 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 544.084 z;
M''^{X-15..-20^{\circ}C}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (544,084 + 16,28) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0044829 \text{ m/200};
G_{337} = (544,084 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,1556567 \ z/c;
M = 0.0188496 + 0.0161649 + 0.0467215 + 0.0245978 + 0.0044829 = 0.1108168  m/200;
G = \max\{0.0145444; 0.0374188; 0.0721011; 0.1138789; 0.1556567\} = 0.1556567 \ c/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ \varepsilon/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 1,24 \cdot 2 + 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 5,868 \ \varepsilon;
M''^{T}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{T}_{2732} = (5,868 + 3,388) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0033322 \text{ m/cod};
G^{T}_{2732} = (5.868 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0025711 \, e/c;
M'^{\Pi}_{2732} = 2,898 \cdot 6 + 1,935 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 20,95 \ \epsilon;
M''^{\Pi}_{2732} = 1.79 \cdot 0.1 / 5 \cdot 60 + 1.24 \cdot 1 = 3.388 c;
M^{\Pi}_{2732} = (20.95 + 3.388) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0029206 \, \text{m/zod};
\mathbf{G}^{\Pi}_{2732} = (20.95 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0067606 \, \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{T}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

38

```
\mathbf{G}^{X}_{2732} = (42,46 \cdot 1 + 3,388 \cdot 1) / 3600 = 0,0127356 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 3,22 \cdot 20 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 68,22 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (68,22+3,388) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0042965 \text{ m/cod};
G^{X-10..-15^{\circ}C}_{2732} = (68,22 \cdot 1 + 3,388 \cdot 1) / 3600 = 0,0198911 \ z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 3,22 \cdot 28 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 93,98 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{\text{X}-15...-20^{\circ}\text{C}}_{2732} = (93.98 + 3.388) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0007789 \text{ m/zod};
G_{2732} = (93.98 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0270467 \ z/c;
M = 0.0033322 + 0.0029206 + 0.0082526 + 0.0042965 + 0.0007789 = 0.0195808 \, \text{m/zod};
G = \max\{0.0025711; 0.0067606; 0.0127356; 0.0198911; 0.0270467\} = 0.0270467 \ \epsilon/c.
Кран гусеничный ДЭК-401
M^{\prime T}_{30I} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 3.5232 \, \epsilon;
M''^{T}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{T}_{301} = (3.5232 + 2.7552) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0022602 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.5232 \cdot 1 + 2.7552 \cdot 1) / 3600 = 0.001744 \, \epsilon/c;
M^{\prime \Pi_{301}} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 6.2112 c;
M''^{\Pi}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{\Pi}_{30I} = (6,2112 + 2,7552) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,001076 \text{ m/zod};
G^{\Pi_{30I}} = (6,2112 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0024907 \ z/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 9.6672 z;
M''^{X}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{X}_{301} = (9,6672 + 2,7552) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,002236 \text{ m/zod};
\mathbf{G}^{X}_{301} = (9,6672 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0034507 \, z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 14,2752 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{X-10..-15^{\circ}C}_{30I} = (14,2752 + 2,7552) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010218 \text{ m/sod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{30l} = (14,2752 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0047307 \ c/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{301} = 0,576 \cdot 28 + 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 18,8832 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (18,8832 + 2,7552) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001731 \text{ m/sod};
G_{301} = (18,8832 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0060107 \ z/c;
M = 0.0022602 + 0.001076 + 0.002236 + 0.0010218 + 0.0001731 = 0.0067672 \, \text{m/zod};
G = \max\{0.001744; 0.0024907; 0.0034507; 0.0047307; 0.0060107\} = 0.0060107 \ z/c.
M'^{T}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.5724 z;
M''^{T}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{T}_{304} = (0.5724 + 0.4476) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0003672 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.5724 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0002833 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.0092 z;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{\Pi}_{304} = (1,0092 + 0,4476) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0001748 \text{ m/zod};
G^{11}_{304} = (1,0092 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0004047 \ z/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.5708 c;
M''^{X}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{X}_{304} = (1,5708 + 0,4476) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0003633 \text{ m/zod};
\mathbf{G}^{X}_{304} = (1,5708 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0005607 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 2.3196 c;
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 c;
```

 $9035.1 - \Pi MOOC 3$

 $M'^{X}_{2732} = 3,22 \cdot 12 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 42,46 \ \epsilon;$

 $M^{X}_{2732} = (42,46 + 3,388) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0082526 \text{ m/zod};$

 $M''^{X}_{2732} = 1.79 \cdot 0.1 / 5 \cdot 60 + 1.24 \cdot 1 = 3.388 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

39

```
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 z;
M^{\text{X-15..-20°C}}_{304} = (3,0684 + 0,4476) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000281 \text{ m/sod};
G_{304} = (3,0684 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0009767 \ z/c;
M = 0.0003672 + 0.0001748 + 0.0003633 + 0.000166 + 0.0000281 = 0.0010995  m/20\partial;
G = \max\{0.0002833; 0.0004047; 0.0005607; 0.0007687; 0.0009767\} = 0.0009767 \ c/c.
M'^{\mathrm{T}}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.504 z;
M''^{\mathrm{T}}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \, \varepsilon;
M^{T}_{328} = (0.504 + 0.384) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0003197 \text{ m/zod};
G^{T}_{328} = (0.504 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.0002467 \ z/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 2.4468 \ \varepsilon;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;
M^{\Pi}_{328} = (2,4468 + 0,384) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0003397 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (2,4468 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,0007863 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 4.872 \ \varepsilon;
M''^{X}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X}_{328} = (4.872 + 0.384) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0009461 \text{ m/zod};
G^{X}_{328} = (4.872 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.00146 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 7.752 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,752+0,384) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004882 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{328} = (7,752 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00226 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 10.632 \text{ z};
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (10,632+0,384) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000881 \text{ m/zod};
G_{328} = (10,632 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00306 \ z/c;
M = 0.0003197 + 0.0003397 + 0.0009461 + 0.0004882 + 0.0000881 = 0.0021817 \text{ m/zod};
G = \max\{0.0002467; 0.0007863; 0.00146; 0.00226; 0.00306\} = 0.00306 \ \epsilon/c.
M'^{T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.519 z;
M''^{\mathrm{T}}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \varepsilon;
M^{T}_{330} = (0.519 + 0.325) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0003038 \text{ m/zod};
G^{T}_{330} = (0.519 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0002344 \ z/c;
M^{\prime \Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.9934 z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{\Pi}_{330} = (0.9934 + 0.325) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001582 \text{ m/zod};
G^{\Pi}_{330} = (0.9934 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0003662 \, \epsilon/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 1.813 z;
M''^{X}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 z;
M^{X}_{330} = (1.813 + 0.325) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0003848 \text{ m/zod};
\mathbf{G}^{X}_{330} = (1.813 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0005939 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 2.773 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,773+0,325) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001859 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,773 \cdot 1 + 0,325 \cdot 1) / 3600 = 0,0008606 \ c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 3.733 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \varepsilon;
M^{X-15..-20^{\circ}C}_{330} = (3.733 + 0.325) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000325 \text{ m/zod};
G_{330} = (3.733 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0011272 \, e/c;
M = 0.0003038 + 0.0001582 + 0.0003848 + 0.0001859 + 0.0000325 = 0.0010652 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,3196 + 0,4476) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,000166 \text{ m/200};$ $\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,3196 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0007687 \text{ z/c};$

 $M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0,0936 \cdot 28 + 0,321 \cdot 0,1 / 5 \cdot 60 + 0,0624 \cdot 1 = 3,0684 \,\varepsilon;$

40

```
M'^{T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 8.748 \ \epsilon;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \varepsilon;
M^{T}_{337} = (8,748 + 3,948) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0045706 \text{ m/zod};
G^{T}_{337} = (8,748 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0035267 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 30.0156 c;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\Pi}_{337} = (30.0156 + 3.948) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0040756 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (30,0156 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0094343 \, c/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 61.884 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{X_{337}} = (61.884 + 3.948) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0118498 \text{ m/zod};
G^{X}_{337} = (61.884 \cdot 1 + 3.948 \cdot 1) / 3600 = 0.0182867 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 100.284 z;
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (100,284 + 3,948) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0062539 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (100,284 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0289533 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 138,684 z;
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (138,684 + 3,948) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0011411 \text{ m/rod};
G_{337} = (138,684 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,03962 \ z/c;
M = 0.0045706 + 0.0040756 + 0.0118498 + 0.0062539 + 0.0011411 = 0.0278909 \,\text{m/zod};
G = \max\{0.0035267; 0.0094343; 0.0182867; 0.0289533; 0.03962\} = 0.03962 \ c/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 \ \epsilon/c.
M'^{T}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 1.416 c;
M''^{\mathrm{T}}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \, \varepsilon;
M^{\mathrm{T}}_{2732} = (1,416 + 0,816) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0008035 \, \text{m/zod};
G^{T}_{2732} = (1,416 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00062 \ \epsilon/c;
M'^{\Pi}_{2732} = 0,702 \cdot 6 + 0,459 \cdot 0,1 / 5 \cdot 60 + 0,3 \cdot 1 = 5,0628 \ \varepsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $G = \max\{0.0002344; 0.0003662; 0.0005939; 0.0008606; 0.0011272\} = 0.0011272 \ z/c.$

41

```
M''^{X}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 c;
M^{X}_{2732} = (10.272 + 0.816) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0019958 \text{ m/zod};
G^{X}_{2732} = (10,272 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00308 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 16.512 c;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,512+0,816) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010397 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,512 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,0048133 \ e/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 22.752 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,752+0,816) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001885 \text{ m/zod};
G_{2732} = (22,752 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.0065467 \ z/c;
M = 0.0008035 + 0.0007055 + 0.0019958 + 0.0010397 + 0.0001885 = 0.004733  m/200;
G = \max\{0.00062; 0.001633; 0.00308; 0.0048133; 0.0065467\} = 0.0065467 \ c/c.
Кран гусеничный ДЭК-401
M'^{T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 3.5232 c;
M''^{T}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{T}_{301} = (3,5232 + 2,7552) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0011301 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.5232 \cdot 1 + 2.7552 \cdot 1) / 3600 = 0.001744 \, \epsilon/c;
M'^{\Pi}_{30I} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 6.2112 c;
M^{\prime\prime}\Pi_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{\Pi_{30I}} = (6.2112 + 2.7552) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.000538 \, \text{m/200};
\mathbf{G}^{\Pi}_{301} = (6,2112 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0024907 \, \epsilon/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 9.6672 z;
M''^{X}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \ \epsilon;
M^{X}_{301} = (9,6672 + 2,7552) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,001118 \text{ m/zod};
\mathbf{G}^{X}_{301} = (9,6672 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0034507 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 14,2752 \text{ z};
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{30I} = (14,2752 + 2,7552) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0005109 \text{ m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{301} = (14,2752 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0047307 \ c/c;
M'^{X-15..-20^{\circ}C}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 5 \cdot 60 + 0.384 \cdot 1 = 18.8832 c;
M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 5 \cdot 60 + 0,384 \cdot 1 = 2,7552 \, \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (18,8832 + 2,7552) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000866 \text{ m/zod};
G_{301} = (18,8832 \cdot 1 + 2,7552 \cdot 1) / 3600 = 0,0060107 \ c/c;
M = 0.0011301 + 0.000538 + 0.001118 + 0.0005109 + 0.0000866 = 0.0033836 \,\text{m/zod};
G = \max\{0.001744; 0.0024907; 0.0034507; 0.0047307; 0.0060107\} = 0.0060107 \ c/c.
M'^{T}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.5724 z;
M''^{\mathrm{T}}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \, \varepsilon;
M^{T}_{304} = (0.5724 + 0.4476) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001836 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.5724 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0002833 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 1.0092 z;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \ \epsilon;
M^{\Pi}_{304} = (1,0092 + 0,4476) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0000874 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (1,0092 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0004047 \, z/c;
M'^{X}_{304} = 0,0936 \cdot 12 + 0,321 \cdot 0,1 / 5 \cdot 60 + 0,0624 \cdot 1 = 1,5708 \ \varepsilon;
M''^{X}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 \, \epsilon;
M^{X}_{304} = (1,5708 + 0,4476) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0001817 \text{ m/zod};
\mathbf{G}^{X}_{304} = (1.5708 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0005607 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\Pi}_{2732} = (5,0628 + 0,816) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0007055 \text{ m/zod};$ $G^{\Pi}_{2732} = (5,0628 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,001633 \text{ z/c};$ $M^{\prime}_{2732} = 0,78 \cdot 12 + 0,51 \cdot 0,1 / 5 \cdot 60 + 0,3 \cdot 1 = 10,272 \text{ z};$

42

```
M^{X-10..-15^{\circ}C}_{304} = (2.3196 + 0.4476) \cdot 30 \cdot 1 \cdot 10^{-6} = 0.000083 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (2.3196 \cdot 1 + 0.4476 \cdot 1) / 3600 = 0.0007687 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 3.0684 \text{ c};
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (3,0684 + 0,4476) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000141 \text{ m/200};
G_{304} = (3,0684 \cdot 1 + 0,4476 \cdot 1) / 3600 = 0,0009767 \ z/c;
M = 0.0001836 + 0.0000874 + 0.0001817 + 0.000083 + 0.0000141 = 0.0005497 \text{ m/zod};
G = \max\{0.0002833; 0.0004047; 0.0005607; 0.0007687; 0.0009767\} = 0.0009767 \ z/c.
M'^{\mathrm{T}}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.504 z;
M''^{T}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 \ \epsilon;
M^{T}_{328} = (0.504 + 0.384) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001598 \text{ m/zod};
G^{T}_{328} = (0.504 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.0002467 \ z/c;
M^{\prime \Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 2.4468 \ \varepsilon;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{\Pi}_{328} = (2,4468 + 0,384) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0001698 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (2,4468 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,0007863 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 4.872 z;
M''^{X}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X}_{328} = (4.872 + 0.384) \cdot 90 \cdot 1 \cdot 10^{-6} = 0.000473 \text{ m/zod};
G^{X}_{328} = (4.872 \cdot 1 + 0.384 \cdot 1) / 3600 = 0.00146 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 7.752 \text{ z};
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X-10..-15^{\circ}C}_{328} = (7,752+0,384) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0002441 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (7,752 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00226 \ z/c;
M'^{\text{X-15...20}^{\circ}\text{C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 10.632 \text{ z};
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 5 \cdot 60 + 0.06 \cdot 1 = 0.384 z;
M^{X-15..-20^{\circ}C}_{328} = (10,632+0,384) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000441 \text{ m/sod};
G_{328} = (10,632 \cdot 1 + 0,384 \cdot 1) / 3600 = 0,00306 \, \epsilon/c;
M = 0.0001598 + 0.0001698 + 0.000473 + 0.0002441 + 0.0000441 = 0.0010909 \, \text{m/zod};
G = \max\{0.0002467; 0.0007863; 0.00146; 0.00226; 0.00306\} = 0.00306 \ \epsilon/c.
M^{\prime T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.519 z;
M''^{\mathrm{T}}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \varepsilon;
M^{T}_{330} = (0.519 + 0.325) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001519 \text{ m/200};
G^{T}_{330} = (0.519 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0002344 \ z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.9934 \, \epsilon;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{\Pi}_{330} = (0.9934 + 0.325) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000791 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.9934 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0003662 \, \epsilon/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 1.813 \ \varepsilon;
M''^{X}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \epsilon;
M^{X}_{330} = (1.813 + 0.325) \cdot 90 \cdot 1 \cdot 10^{-6} = 0.0001924 \text{ m/zod};
G^{X}_{330} = (1.813 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0005939 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 2.773 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,773+0,325) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0000929 \text{ m/sod};
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,773 \cdot 1 + 0,325 \cdot 1) / 3600 = 0,0008606 \, c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 3.733 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 5 \cdot 60 + 0.097 \cdot 1 = 0.325 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3,733+0,325) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000162 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0,0936 \cdot 20 + 0,321 \cdot 0,1 / 5 \cdot 60 + 0,0624 \cdot 1 = 2,3196 \ \epsilon;$

 $M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 5 \cdot 60 + 0.0624 \cdot 1 = 0.4476 z;$

43

```
M'^{\mathrm{T}}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 8.748 \, \varepsilon;
M''^{\mathrm{T}}_{337} = 1.29 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 3.948 \ \varepsilon;
M^{T}_{337} = (8,748 + 3,948) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0022853 \text{ m/zod};
G^{T}_{337} = (8,748 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0035267 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 30.0156 \, \varepsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{\Pi}_{337} = (30,0156 + 3,948) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0020378 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (30,0156 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0094343 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 61.884 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{X}_{337} = (61.884 + 3.948) \cdot 90 \cdot 1 \cdot 10^{-6} = 0.0059249 \text{ m/zod};
G^{X}_{337} = (61,884 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0182867 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 100.284 z;
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 \ \epsilon;
M^{X-10..-15^{\circ}C}_{337} = (100,284+3,948) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,003127 \text{ m/200};
G^{X-10..-15^{\circ}C}_{337} = (100,284 \cdot 1 + 3,948 \cdot 1) / 3600 = 0,0289533 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 5 \cdot 60 + 2.4 \cdot 1 = 138.684 \text{ c};
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 5 \cdot 60 + 2,4 \cdot 1 = 3,948 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (138,684 + 3,948) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0005705 \text{ m/200};
G_{337} = (138.684 \cdot 1 + 3.948 \cdot 1) / 3600 = 0.03962 \ z/c;
M = 0.0022853 + 0.0020378 + 0.0059249 + 0.003127 + 0.0005705 = 0.0139455  m/200;
G = \max\{0.0035267; 0.0094343; 0.0182867; 0.0289533; 0.03962\} = 0.03962 \ c/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 1 \cdot 10^{-6} = 0 \text{ m/sod};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 1 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 1 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 1 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 1.416 \ \epsilon;
M''^{\mathrm{T}}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
M^{T}_{2732} = (1,416 + 0,816) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0004018 \text{ m/zod};
G^{T}_{2732} = (1.416 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.00062 \ \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

M = 0.0001519 + 0.0000791 + 0.0001924 + 0.0000929 + 0.0000162 = 0.0005326 m/200; $G = \max\{0.0002344; 0.0003662; 0.0005939; 0.0008606; 0.0011272\} = 0.0011272$ z/c.

 $G_{330} = (3.733 \cdot 1 + 0.325 \cdot 1) / 3600 = 0.0011272 \, e/c;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

44

```
M^{\Pi}_{2732} = (5,0628 + 0,816) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0003527 \text{ m/zod};
G^{\Pi}_{2732} = (5,0628 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,001633 \ z/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 10.272 z;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 c;
M^{X}_{2732} = (10,272 + 0,816) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0009979 \text{ m/zod};
G^{X}_{2732} = (10,272 \cdot 1 + 0,816 \cdot 1) / 3600 = 0,00308 \, c/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 16.512 c;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 c;
M^{\text{X}-10...15^{\circ}\text{C}}_{2732} = (16,512+0,816) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0005198 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16.512 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.0048133 \ z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 22.752 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,752+0,816) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000943 \text{ m/zod};
G_{2732} = (22,752 \cdot 1 + 0.816 \cdot 1) / 3600 = 0.0065467 \ z/c;
M = 0.0004018 + 0.0003527 + 0.0009979 + 0.0005198 + 0.0000943 = 0.0023665 \,\text{m/zod};
G = \max\{0.00062; 0.001633; 0.00308; 0.0048133; 0.0065467\} = 0.0065467 \ c/c.
Кран автомобильный КС-55729-3В
M^{\prime T}_{30I} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 \ \varepsilon;
M''^{\mathrm{T}}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{T}_{301} = (9,2592 + 7,2272) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0118702 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{30I} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \ \epsilon/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \varepsilon;
M''^{\Pi}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \epsilon;
M^{\Pi}_{301} = (16,3952 + 7,2272) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0056694 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (16,3952 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 \ \epsilon;
M''^{X}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \epsilon;
M^{X_{301}} = (25,5632 + 7,2272) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0118045 \text{ m/zod};
\mathbf{G}^{X}_{301} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (37,7872 + 7,2272) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0054017 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{30I} = (37,7872 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,012504 \, c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 \text{ z};
M''^{X-15..-20^{\circ}C}_{30I} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{X-15...20^{\circ}C}_{301} = (50.0112 + 7.2272) \cdot 4 \cdot 4 \cdot 10^{-6} = 0.0009158 \text{ m/zod};
G_{301} = (50,0112 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0158996 \ z/c;
M = 0.0118702 + 0.0056694 + 0.0118045 + 0.0054017 + 0.0009158 = 0.0356617 \text{ m/zod};
G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996 \ z/c.
M'^{\mathrm{T}}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 \, \epsilon;
M''^{\mathrm{T}}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{T}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0019284 \text{ m/zod};
G^{T}_{304} = (1,5042 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,000744 \ z/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 c;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\Pi}_{304} = (2,664 + 1,1742) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0009212 \text{ m/zod};
G^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \, c/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 c;
M''^{X}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M^{\prime \Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 5.0628 \ \epsilon;$

 $M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 5 \cdot 60 + 0.3 \cdot 1 = 0.816 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

45

```
G^{X}_{304} = (4,1538 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,00148 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (6,1402+1,1742) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0008777 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{X-15..-20^{\circ}C}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 c;
M''^{X-15..-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (8,1266+1,1742) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0001488 \text{ m/200};
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
M = 0.0019284 + 0.0009212 + 0.0019181 + 0.0008777 + 0.0001488 = 0.0057942 \, \text{m/zod};
G = \max\{0.000744; 0.0010662; 0.00148; 0.0020318; 0.0025836\} = 0.0025836 \ \epsilon/c.
M'^{\mathrm{T}}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 \, \epsilon;
M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{T}_{328} = (1,374 + 1,034) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0017338 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ z/c;
M^{\prime \Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 c;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.0018908 \, \text{m/zod};
\mathbf{G}^{\Pi}_{328} = (6.8444 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0021884 \, \epsilon/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 13,706 \ \varepsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{X}_{328} = (13,706 + 1,034) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0053064 \, \text{m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 21,866 \text{ } z;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (21,866 + 1,034) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,002748 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611 \ c/c;
M'^{X-15..-20^{\circ}C}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 c;
M''^{X-15...-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,000497 \text{ m/zod};
G_{328} = (30,026 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0086278 \ e/c;
M = 0.0017338 + 0.0018908 + 0.0053064 + 0.002748 + 0.000497 = 0.0121759  m/zod;
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278 \ z/c.
M'^{\mathrm{T}}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 \ \varepsilon;
M''^{T}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{T}_{330} = (1,362 + 0,862) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0016013 \text{ m/sod};
G^{T}_{330} = (1.362 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.0006178 \ z/c;
M'^{\Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 c;
M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\Pi}_{330} = (2,6044 + 0,862) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0008319 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \ z/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 4.726 c
M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{X}_{330} = (4,726 + 0,862) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0020117 \text{ m/zod};
G^{X_{330}} = (4,726 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0015522 \, z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 \text{ c};
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (7,206+0,862) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0009682 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 \ \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{X}_{304} = (4,1538 + 1,1742) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0019181 \text{ m/200};$

46

```
G_{330} = (9,686 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,00293 \ \epsilon/c;
M = 0.0016013 + 0.0008319 + 0.0020117 + 0.0009682 + 0.0001688 = 0.0055818 \, \text{m/zod};
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293 \ \epsilon/c.
M^{\prime T}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 c;
M''^{\mathrm{T}}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \, \epsilon;
M^{T}_{337} = (22,954 + 10,354) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0239818 \text{ m/zod};
M'^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \, \epsilon;
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\Pi_{337}} = (78,7888 + 10,354) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0213943 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (78,7888 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0247619 \, \epsilon/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 c;
M''^{X}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0622066 \, \text{m/zod};
\mathbf{G}^{X}_{337} = (162,442 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0479989 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 263.242 z;
M''^{X-10..-15^{\circ}C}_{337} = 3,37 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 10,354 c;
M^{X-10..-15^{\circ}C}_{337} = (263,242+10,354) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0328315 \, \text{m/200};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 z;
M''^{X-15..-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{337} = (364,042 + 10,354) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0059903 \text{ m/cod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0239818 + 0.0213943 + 0.0622066 + 0.0328315 + 0.0059903 = 0.1464044  m/200;
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ \epsilon/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 4 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M^{\prime \Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 4 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 4 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10...15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 4 \cdot 10^{-6} = 0 \text{ m/200};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 4 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{T}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 \, \epsilon;
M''^{T}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{X-15...20^{\circ}C}_{330} = (9.686 + 0.862) \cdot 4 \cdot 4 \cdot 10^{-6} = 0.0001688 \, \text{m/zod};$

47

```
M''^{\Pi}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 c;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0037194 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13,3396 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0043049 \, \epsilon/c;
M'^{X}_{2732} = 2,05 \cdot 12 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 27,034 \ \varepsilon;
M''^{X}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \epsilon;
M^{X}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0105091 \text{ m/zod};
G^{X}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 2,05 \cdot 20 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 43,434 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (43,434+2,158) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,005471 \text{ m/200};
G^{X-10..-15^{\circ}C}_{2732} = (43.434 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.0126644 \, c/c;
M'^{X-15..-20^{\circ}C}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{2732} = (59.834 + 2.158) \cdot 4 \cdot 4 \cdot 10^{-6} = 0.0009919 \text{ m/zod};
G_{2732} = (59.834 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.01722 \ \epsilon/c;
M = 0.0042451 + 0.0037194 + 0.0105091 + 0.005471 + 0.0009919 = 0.0249366 \, \text{m/zod};
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ z/c.
Кран автомобильный КС-4572
M'^{\mathrm{T}}_{30I} = 0.624 \cdot 2 + 3.208 \cdot 0.1 / 10 \cdot 60 + 0.624 \cdot 1 = 3.7968 \, \varepsilon;
M''^{T}_{30I} = 3,208 \cdot 0,1 / 10 \cdot 60 + 0,624 \cdot 1 = 2,5488 \ \varepsilon;
M^{\mathrm{T}}_{301} = (3,7968 + 2,5488) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0079955 \, \text{m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.7968 \cdot 1 + 2.5488 \cdot 1) / 3600 = 0.0017627 \, z/c;
M^{\prime \Pi}_{301} = 0.936 \cdot 6 + 3.208 \cdot 0.1 / 10 \cdot 60 + 0.624 \cdot 1 = 8.1648 \, \epsilon;
M''^{\Pi}_{30I} = 3,208 \cdot 0,1 / 10 \cdot 60 + 0,624 \cdot 1 = 2,5488 \ \epsilon;
M^{\Pi}_{30I} = (8,1648 + 2,5488) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0044997 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (8,1648 \cdot 1 + 2,5488 \cdot 1) / 3600 = 0,002976 \, \epsilon/c;
M'^{X}_{301} = 0.936 \cdot 12 + 3.208 \cdot 0.1 / 10 \cdot 60 + 0.624 \cdot 1 = 13.7808 \, \epsilon;
M''^{X}_{301} = 3,208 \cdot 0,1 / 10 \cdot 60 + 0,624 \cdot 1 = 2,5488 \ \epsilon;
M^{X}_{301} = (13,7808 + 2,5488) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0102876 \text{ m/zod};
G^{X}_{30I} = (13,7808 \cdot 1 + 2,5488 \cdot 1) / 3600 = 0,004536 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.936 \cdot 20 + 3.208 \cdot 0.1 / 10 \cdot 60 + 0.624 \cdot 1 = 21.2688 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{301} = 3,208 \cdot 0,1 / 10 \cdot 60 + 0,624 \cdot 1 = 2,5488 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{301} = (21,2688 + 2,5488) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0050017 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{30I} = (21,2688 \cdot 1 + 2,5488 \cdot 1) / 3600 = 0,006616 \ c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.936 \cdot 28 + 3.208 \cdot 0.1 / 10 \cdot 60 + 0.624 \cdot 1 = 28,7568 \, \epsilon;
M''^{X-15...20^{\circ}C}_{30I} = 3,208 \cdot 0,1 / 10 \cdot 60 + 0,624 \cdot 1 = 2,5488 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (28,7568 + 2,5488) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0008766 \text{ m/zod};
G_{301} = (28,7568 \cdot 1 + 2,5488 \cdot 1) / 3600 = 0,008696 \ z/c;
M = 0.0079955 + 0.0044997 + 0.0102876 + 0.0050017 + 0.0008766 = 0.0286611  m/200;
G = \max\{0.0017627; 0.002976; 0.004536; 0.006616; 0.008696\} = 0.008696 \ c/c.
M'^{\mathrm{T}}_{304} = 0.1014 \cdot 2 + 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.6168 \, \varepsilon;
M''^{\mathrm{T}}_{304} = 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.414 \, \epsilon;
M^{T}_{304} = (0.6168 + 0.414) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0012988 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.6168 \cdot 1 + 0.414 \cdot 1) / 3600 = 0.0002863 \ \epsilon/c;
M'^{\Pi}_{304} = 0.152 \cdot 6 + 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 1.326 c;
M^{\prime\prime}\Pi_{304} = 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.414 \, \varepsilon;
M^{\Pi}_{304} = (1,326 + 0,414) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0007308 \text{ m/sod};
\mathbf{G}^{\Pi}_{304} = (1,326 \cdot 1 + 0.414 \cdot 1) / 3600 = 0.0004833 \ \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{T}_{2732} = (3,738 + 2,158) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0042451 \text{ m/200};$ $G^{T}_{2732} = (3,738 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0016378 \text{ e/c};$

 $M'^{\Pi}_{2732} = 1,845 \cdot 6 + 1,233 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 13,3396 c;$

48

```
M''^{X}_{304} = 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.414 z;
M^{X}_{304} = (2.238 + 0.414) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.0016708 \, \text{m/zod};
\mathbf{G}^{X}_{304} = (2,238 \cdot 1 + 0,414 \cdot 1) / 3600 = 0,0007367 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.152 \cdot 20 + 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 3.454 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.414 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (3,454+0,414) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0008123 \text{ m/200};
G^{X-10..-15^{\circ}C}_{304} = (3,454 \cdot 1 + 0,414 \cdot 1) / 3600 = 0,0010744 \ z/c;
M'^{X-15...-20^{\circ}C}_{304} = 0.152 \cdot 28 + 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 4.67 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.414 c;
M^{X-15..-20^{\circ}C}_{304} = (4,67+0,414) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0001424 \text{ m/200};
G_{304} = (4.67 \cdot 1 + 0.414 \cdot 1) / 3600 = 0.0014122 \ z/c;
M = 0.0012988 + 0.0007308 + 0.0016708 + 0.0008123 + 0.0001424 = 0.004655  m/200;
G = \max\{0.0002863; 0.0004833; 0.0007367; 0.0010744; 0.0014122\} = 0.0014122 \ z/c.
M'^{T}_{328} = 0.1 \cdot 2 + 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.57 \ \epsilon;
M''^{\mathrm{T}}_{328} = 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.37 \ \varepsilon;
M^{T}_{328} = (0.57 + 0.37) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0011844 \text{ m/zod};
G^{T}_{328} = (0.57 \cdot 1 + 0.37 \cdot 1) / 3600 = 0.0002611 \ z/c;
M'^{\Pi}_{328} = 0.54 \cdot 6 + 0.603 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 3.7018 \ \epsilon;
M''^{\Pi}_{328} = 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.37 \ \varepsilon;
M^{\Pi}_{328} = (3,7018 + 0,37) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0017102 \text{ m/zod};
G^{\Pi}_{328} = (3,7018 \cdot 1 + 0,37 \cdot 1) / 3600 = 0,0011311 \, z/c;
M'^{X}_{328} = 0.6 \cdot 12 + 0.67 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 7,702 \ \varepsilon;
M''^{X}_{328} = 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.37 \ \epsilon;
M^{X}_{328} = (7,702 + 0,37) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0050854 \text{ m/zod};
G^{X}_{328} = (7,702 \cdot 1 + 0,37 \cdot 1) / 3600 = 0,0022422 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.6 \cdot 20 + 0.67 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 12,502 \text{ z};
M''^{X-10..-15^{\circ}C}_{328} = 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.37 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{328} = (12,502+0,37) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0027031 \text{ m/200};
G^{X-10..-15^{\circ}C}_{328} = (12,502 \cdot 1 + 0,37 \cdot 1) / 3600 = 0,0035756 \ c/c;
M'^{X-15..-20^{\circ}C}_{328} = 0.6 \cdot 28 + 0.67 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 17.302 z;
M''^{X-15..-20^{\circ}C}_{328} = 0.45 \cdot 0.1 / 10 \cdot 60 + 0.1 \cdot 1 = 0.37 \ \varepsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{328} = (17,302 + 0,37) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0004948 \text{ m/zod};
G_{328} = (17,302 \cdot 1 + 0.37 \cdot 1) / 3600 = 0.0049089 \ \epsilon/c;
M = 0.0011844 + 0.0017102 + 0.0050854 + 0.0027031 + 0.0004948 = 0.0111779 \text{ m/zod};
G = \max\{0.0002611; 0.0011311; 0.0022422; 0.0035756; 0.0049089\} = 0.0049089 \ \epsilon/c.
M'^{T}_{330} = 0.16 \cdot 2 + 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.666 z;
M''^{\mathrm{T}}_{330} = 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.346 \ \varepsilon;
M^{T}_{330} = (0.666 + 0.346) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0012751 \text{ m/zod};
G^{T}_{330} = (0.666 \cdot 1 + 0.346 \cdot 1) / 3600 = 0.0002811 \ z/c;
M^{\prime \Pi}_{330} = 0.18 \cdot 6 + 0.342 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 1.4452 \, \epsilon;
M''^{\Pi}_{330} = 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.346 \ \epsilon;
M^{\Pi}_{330} = (1,4452 + 0,346) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0007523 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (1,4452 \cdot 1 + 0,346 \cdot 1) / 3600 = 0,0004976 \, \varepsilon/c;
M'^{X}_{330} = 0.2 \cdot 12 + 0.38 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 2.788 \ \varepsilon;
M''^{X}_{330} = 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.346 \ \epsilon;
M^{X}_{330} = (2.788 + 0.346) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.0019744 \text{ m/zod};
G^{X}_{330} = (2,788 \cdot 1 + 0,346 \cdot 1) / 3600 = 0,0008706 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.2 \cdot 20 + 0.38 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 4.388 \ \epsilon;
M^{"X-10..-15^{\circ}C}_{330} = 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.346 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (4,388 + 0,346) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0009941 \text{ m/200};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{X}_{304} = 0.152 \cdot 12 + 0.521 \cdot 0.1 / 10 \cdot 60 + 0.1014 \cdot 1 = 2.238 \ \epsilon;$

49

```
M = 0.0012751 + 0.0007523 + 0.0019744 + 0.0009941 + 0.0001774 = 0.0051733  m/200;
G = \max\{0.0002811; 0.0004976; 0.0008706; 0.001315; 0.0017594\} = 0.0017594 \ z/c.
M'^{\mathrm{T}}_{337} = 3.9 \cdot 2 + 2.09 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 12.964 \, \epsilon;
M''^{T}_{337} = 2.09 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 5.164 c;
M^{\mathrm{T}}_{337} = (12,964 + 5,164) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0228413 \, \text{m/zod};
G^{T}_{337} = (12,964 \cdot 1 + 5,164 \cdot 1) / 3600 = 0,0050356    z/c;
M'^{\Pi}_{337} = 7.02 \cdot 6 + 2.295 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 47.407 \ \varepsilon;
M''^{\Pi}_{337} = 2.09 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 5.164 \, \epsilon;
M^{\Pi}_{337} = (47,407 + 5,164) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0220798 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (47,407 \cdot 1 + 5,164 \cdot 1) / 3600 = 0,0146031 \, c/c;
M'^{X}_{337} = 7.8 \cdot 12 + 2.55 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 99.04 z;
M''^{X}_{337} = 2.09 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 5.164 \epsilon;
M^{X_{337}} = (99.04 + 5.164) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.0656485 \text{ m/zod};
G^{X}_{337} = (99.04 \cdot 1 + 5.164 \cdot 1) / 3600 = 0.0289456 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 7.8 \cdot 20 + 2.55 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 161.44 c;
M''^{X-10..-15^{\circ}C}_{337} = 2,09 \cdot 0,1 / 10 \cdot 60 + 3,91 \cdot 1 = 5,164 \epsilon;
M^{X-10..-15^{\circ}C}_{337} = (161,44+5,164) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0349868 \, \text{m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (161,44 \cdot 1 + 5,164 \cdot 1) / 3600 = 0,0462789 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 7.8 \cdot 28 + 2.55 \cdot 0.1 / 10 \cdot 60 + 3.91 \cdot 1 = 223.84 \text{ z};
M''^{X-15...-20^{\circ}C}_{337} = 2,09 \cdot 0,1 / 10 \cdot 60 + 3,91 \cdot 1 = 5,164 \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (223.84 + 5.164) \cdot 4 \cdot 7 \cdot 10^{-6} = 0.0064121 \text{ m/200};
G_{337} = (223.84 \cdot 1 + 5.164 \cdot 1) / 3600 = 0.0636122 \ z/c;
M = 0.0228413 + 0.0220798 + 0.0656485 + 0.0349868 + 0.0064121 = 0.1519686 \, \text{m/zod};
G = \max\{0.0050356; 0.0146031; 0.0289456; 0.0462789; 0.0636122\} = 0.0636122 \ z/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
\mathbf{M}^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 7 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 7 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X -15..-20°C}}_{2704} = (0+0) \cdot 4 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
```

 $9035.1 - \Pi MOOC 3$

 $G^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (4,388 \cdot 1 + 0,346 \cdot 1) / 3600 = 0,001315 \ \epsilon/c;$ $M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0,2 \cdot 28 + 0,38 \cdot 0,1 / 10 \cdot 60 + 0,16 \cdot 1 = 5,988 \ \epsilon;$

 $M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (5.988 + 0.346) \cdot 4 \cdot 7 \cdot 10^{-6} = 0.0001774 \text{ m/zod};$

 $M''^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 0.1 / 10 \cdot 60 + 0.16 \cdot 1 = 0.346 c;$

 $G_{330} = (5.988 \cdot 1 + 0.346 \cdot 1) / 3600 = 0.0017594 \, z/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

50

```
M''^{\Pi}_{2732} = 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 0.916 \ \epsilon;
M^{\Pi}_{2732} = (7,807 + 0,916) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0036637 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (7.807 \cdot 1 + 0.916 \cdot 1) / 3600 = 0.0024231 \, z/c;
M'^{X}_{2732} = 1,27 \cdot 12 + 0,85 \cdot 0,1 / 10 \cdot 60 + 0,49 \cdot 1 = 16,24 c;
M''^{X}_{2732} = 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 0.916 c;
M^{X}_{2732} = (16,24+0,916) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0108083 \text{ m/zod};
G^{X}_{2732} = (16.24 \cdot 1 + 0.916 \cdot 1) / 3600 = 0.0047656 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 1,27 \cdot 20 + 0,85 \cdot 0,1 / 10 \cdot 60 + 0,49 \cdot 1 = 26,4 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 0.916 z;
M^{X-10..-15^{\circ}C}_{2732} = (26.4 + 0.916) \cdot 30 \cdot 7 \cdot 10^{-6} = 0.0057364 \, \text{m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (26.4 \cdot 1 + 0.916 \cdot 1) / 3600 = 0.0075878 \, z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 1,27 \cdot 28 + 0,85 \cdot 0,1 / 10 \cdot 60 + 0,49 \cdot 1 = 36,56 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 0.916 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (36,56+0,916) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0010493 \text{ m/zod};
G_{2732} = (36,56 \cdot 1 + 0.916 \cdot 1) / 3600 = 0.01041 \ z/c;
M = 0.0035431 + 0.0036637 + 0.0108083 + 0.0057364 + 0.0010493 = 0.0248007 \, \text{m/zod};
G = \max\{0.0007811; 0.0024231; 0.0047656; 0.0075878; 0.01041\} = 0.01041 \ c/c.
Погрузчик ТО-18Б
M'^{T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 2.3376 z;
M''^{\mathrm{T}}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{T}_{301} = (2,3376 + 1,5696) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0007033 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,3376 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,0010853 \ \epsilon/c;
M'^{\Pi}_{301} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 5.0256 \, \epsilon;
M^{\prime\prime}^{\Pi}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{\Pi}_{301} = (5,0256 + 1,5696) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0003957 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (5,0256 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,001832 \, \epsilon/c;
M'^{X}_{30I} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 8.4816 c;
M''^{X}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \epsilon;
M^{X}_{301} = (8,4816 + 1,5696) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0009046 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (8,4816 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,002792 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 13.0896 \text{ z};
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \varepsilon;
M^{\text{X-}10..-15^{\circ}\text{C}}_{30I} = (13,0896 + 1,5696) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0004398 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (13,0896 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,004072 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 17.6976 \, \epsilon;
M''^{X-15..-20^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 c;
M^{\text{X-15..-20}^{\circ}\text{C}}_{30I} = (17,6976 + 1,5696) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0000771 \text{ m/zod};
G_{301} = (17,6976 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,005352 \, e/c;
M = 0.0007033 + 0.0003957 + 0.0009046 + 0.0004398 + 0.0000771 = 0.0025205 \,\text{m/zod};
G = \max\{0.0010853; 0.001832; 0.002792; 0.004072; 0.005352\} = 0.005352 \ \epsilon/c.
M'^{\mathrm{T}}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.3798 \, \varepsilon;
M''^{\mathrm{T}}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \, \varepsilon;
M^{\mathrm{T}}_{304} = (0.3798 + 0.255) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001143 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.3798 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0001763 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.8166 \, \epsilon;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M'^{T}_{2732} = 0.49 \cdot 2 + 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 1.896 \ \epsilon;$

 $\mathbf{M}^{\mathrm{T}}_{2732} = (1,896 + 0,916) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0035431 \,\text{m/200};$ $\mathbf{G}^{\mathrm{T}}_{2732} = (1,896 \cdot 1 + 0,916 \cdot 1) / 3600 = 0,0007811 \,\text{z/c};$

 $M'^{\Pi}_{2732} = 1,143 \cdot 6 + 0,765 \cdot 0,1 / 10 \cdot 60 + 0,49 \cdot 1 = 7,807 c;$

 $M''^{T}_{2732} = 0.71 \cdot 0.1 / 10 \cdot 60 + 0.49 \cdot 1 = 0.916 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

51

 $9035.1 - \Pi MOOC 3$

```
\mathbf{G}^{\Pi_{304}} = (0.8166 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0002977 \, z/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 1.3782 \ \varepsilon;
M''^{X}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{X}_{304} = (1,3782 + 0.255) \cdot 90 \cdot 1 \cdot 10^{-6} = 0.000147 \text{ m/zod};
G^{X}_{304} = (1,3782 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0004537 \ e/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.127 z;
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,127+0,255) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0000715 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,127 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0006617 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.8758 \ \epsilon;
M''^{X-15...20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (2.8758 + 0.255) \cdot 4 \cdot 1 \cdot 10^{-6} = 0.0000125 \text{ m/zod};
G_{304} = (2.8758 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0008697 \ z/c;
M = 0.0001143 + 0.0000643 + 0.000147 + 0.0000715 + 0.0000125 = 0.0004095  m/200;
G = \max\{0.0001763; 0.0002977; 0.0004537; 0.0006617; 0.0008697\} = 0.0008697 \ c/c.
M'^{\mathrm{T}}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.342 \, \epsilon;
M''^{T}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \epsilon;
M^{T}_{328} = (0.342 + 0.222) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001015 \text{ m/zod};
G^{T}_{328} = (0.342 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0001567 \ z/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 2.2254 c;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\Pi}_{328} = (2,2254 + 0,222) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0001468 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (2,2254 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0006798 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 4.626 z;
M''^{X}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X}_{328} = (4.626 + 0.222) \cdot 90 \cdot 1 \cdot 10^{-6} = 0.0004363 \text{ m/zod};
\mathbf{G}^{X}_{328} = (4,626 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0013467 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 7.506 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,506+0,222) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0002318 \text{ m/zod};
G^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,506 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0021467 \ c/c;
M'^{X-15..-20^{\circ}C}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 10.386 c;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (10.386 + 0.222) \cdot 4 \cdot 1 \cdot 10^{-6} = 0.0000424 \text{ m/zod};
G_{328} = (10.386 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0029467 \ z/c;
M = 0.0001015 + 0.0001468 + 0.0004363 + 0.0002318 + 0.0000424 = 0.000959  m/200;
G = \max\{0.0001567; 0.0006798; 0.0013467; 0.0021467; 0.0029467\} = 0.0029467 \ c/c.
M'^{\mathrm{T}}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.405 \, \epsilon;
M''^{T}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{T}_{330} = (0.405 + 0.211) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0001109 \text{ m/zod};
G^{T}_{330} = (0.405 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0001711 \ z/c;
M^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.8692 \, \epsilon;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 \ \epsilon;
M^{\Pi}_{330} = (0.8692 + 0.211) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000648 \, \text{m/zod};
\mathbf{G}^{\Pi}_{330} = (0.8692 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0003001 \, \epsilon/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 1.675 z;
M''^{X}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 c;
M^{X}_{330} = (1,675 + 0,211) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0001697 \text{ m/zod};
\mathbf{G}^{X}_{330} = (1,675 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0005239 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 2.635 \ \varepsilon;
```

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\Pi}_{304} = (0.8166 + 0.255) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000643 \text{ m/200};$

52

```
\mathbf{G}^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (2,635 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0007906 \, \epsilon/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 3.595 z;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{330} = (3.595 + 0.211) \cdot 4 \cdot 1 \cdot 10^{-6} = 0.0000152 \text{ m/zod};
G_{330} = (3.595 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0010572 \ z/c;
M = 0.0001109 + 0.0000648 + 0.0001697 + 0.0000854 + 0.0000152 = 0.000446 \, \text{m/zod};
G = \max\{0.0001711; 0.0003001; 0.0005239; 0.0007906; 0.0010572\} = 0.0010572 \ c/c.
M^{\prime T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 7.974 \, \epsilon;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \,\varepsilon;
M^{T}_{337} = (7.974 + 3.174) \cdot 180 \cdot 1 \cdot 10^{-6} = 0.0020066 \text{ m/zod};
G^{T}_{337} = (7.974 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0030967 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 29.1678 \, \epsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 z;
M^{\Pi}_{337} = (29,1678 + 3,174) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0019405 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (29,1678 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0089838 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 60.942 c;
M''^{X}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{X}_{337} = (60,942 + 3,174) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0057704 \, \text{m/zod};
G^{X}_{337} = (60.942 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.01781 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 99.342 z;
M''^{X-10..-15^{\circ}C}_{337} = 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 3.174 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (99,342+3,174) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0030755 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (99.342 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0284767 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 137.742 c;
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (137,742 + 3,174) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,0005637 \text{ m/zod};
G_{337} = (137,742 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0391433 \ z/c;
M = 0.0020066 + 0.0019405 + 0.0057704 + 0.0030755 + 0.0005637 = 0.0133567  m/200;
G = \max\{0.0030967; 0.0089838; 0.01781; 0.0284767; 0.0391433\} = 0.0391433 \ z/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{\mathrm{T}}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \, \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \epsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 1 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 1 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\text{X-15...20°C}}_{2704} = (0+0) \cdot 4 \cdot 1 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,635+0,211) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0000854 \text{ m/zod};$

53

```
M^{T}_{2732} = (1,158 + 0,558) \cdot 180 \cdot 1 \cdot 10^{-6} = 0,0003089 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{2732} = (1,158 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0004767 \, \epsilon/c;
M'^{\Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 4.7874 \, \epsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\Pi}_{2732} = (4,7874 + 0,558) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0003207 \text{ m/zod};
G^{\Pi}_{2732} = (4,7874 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0014848 \, c/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 9.966 c;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{X}_{2732} = (9,966 + 0,558) \cdot 90 \cdot 1 \cdot 10^{-6} = 0,0009472 \text{ m/zod};
\mathbf{G}^{X}_{2732} = (9.966 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0029233 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 16,206 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,206+0,558) \cdot 30 \cdot 1 \cdot 10^{-6} = 0,0005029 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,206 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0046567 c/c;
M'^{X-15..-20^{\circ}C}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 22,446 c
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X-15..-20°C}}_{2732} = (22,446 + 0,558) \cdot 4 \cdot 1 \cdot 10^{-6} = 0,000092 \text{ m/zod};
G_{2732} = (22,446 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,00639 \ e/c;
M = 0.0003089 + 0.0003207 + 0.0009472 + 0.0005029 + 0.000092 = 0.0021717 \, m/zod;
G = \max\{0.0004767; 0.0014848; 0.0029233; 0.0046567; 0.00639\} = 0.00639 \ z/c.
Автогидроподъемник АГП-28
M^{\prime T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 2.3376 \, \epsilon;
M''^{T}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \epsilon;
M^{T}_{301} = (2,3376 + 1,5696) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0014066 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,3376 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,0010853 \, \epsilon/c;
M'^{\Pi}_{301} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 5.0256 \, \epsilon;
M''^{\Pi}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \varepsilon;
M^{\Pi}_{30I} = (5,0256 + 1,5696) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0007914 \, \text{m/zod};
\mathbf{G}^{\Pi}_{30I} = (5.0256 \cdot 1 + 1.5696 \cdot 1) / 3600 = 0.001832 \, \epsilon/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 8.4816 c;
M''^{X}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \epsilon;
M^{X}_{301} = (8.4816 + 1.5696) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0018092 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (8,4816 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,002792 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 13.0896 \, \epsilon;
M''^{X-10...15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \epsilon;
M^{X-10..-15^{\circ}C}_{301} = (13,0896+1,5696) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0008796 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{30I} = (13,0896 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,004072 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 17.6976 \, \varepsilon;
M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \epsilon;
M^{\text{X-15..-20°C}}_{301} = (17,6976 + 1,5696) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001541 \text{ m/200};
G_{301} = (17,6976 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,005352 \ e/c;
M = 0.0014066 + 0.0007914 + 0.0018092 + 0.0008796 + 0.0001541 = 0.0050409 \, \text{m/zod};
G = \max\{0.0010853; 0.001832; 0.002792; 0.004072; 0.005352\} = 0.005352 \ c/c.
M'^{\mathrm{T}}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.3798 \ \varepsilon;
M''^{\mathrm{T}}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \, \epsilon;
M^{T}_{304} = (0.3798 + 0.255) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002285 \text{ m/zod};
G^{T}_{304} = (0.3798 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0001763 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

M = 0 + 0 + 0 + 0 + 0 = 0 m/200; $G = \max\{0; 0; 0; 0; 0\} = 0 \text{ z/c}.$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 1.158 \, \epsilon;$

 $M''^{\mathrm{T}}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \, \varepsilon;$

54

 $9035.1 - \Pi MOOC 3$

```
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\Pi}_{304} = (0.8166 + 0.255) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001286 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.8166 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0002977 \ z/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 1.3782 c;
M''^{X}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{X}_{304} = (1,3782 + 0.255) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.000294 \text{ m/zod};
G^{X}_{304} = (1,3782 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0004537 \ z/c;
M^{X-10...15^{\circ}C}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.127 c;
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,127+0,255) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001429 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,127 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0006617 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.8758 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (2.8758 + 0.255) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.000025 \text{ m/zod};
G_{304} = (2,8758 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0008697 \ z/c;
M = 0.0002285 + 0.0001286 + 0.000294 + 0.0001429 + 0.000025 = 0.0008191 \text{ m/zod};
G = \max\{0.0001763; 0.0002977; 0.0004537; 0.0006617; 0.0008697\} = 0.0008697 \ c/c.
M'^{T}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.342 \ \epsilon;
M''^{\mathrm{T}}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \varepsilon;
M^{T}_{328} = (0.342 + 0.222) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.000203 \text{ m/zod};
G^{T}_{328} = (0.342 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0001567 \ z/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 2.2254 z;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \epsilon;
M^{\Pi}_{328} = (2.2254 + 0.222) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0002937 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (2,2254 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0006798 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 4.626 z;
M''^{X}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X}_{328} = (4,626 + 0,222) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0008726 \text{ m/zod};
G^{X}_{328} = (4,626 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0013467 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 7.506 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,506+0,222) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004637 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (7,506 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0021467 \ \epsilon/c;
M'^{\text{X}-15...20^{\circ}\text{C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 10.386 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (10,386 + 0,222) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000849 \text{ m/200};
G_{328} = (10.386 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0029467 \ z/c;
M = 0.000203 + 0.0002937 + 0.0008726 + 0.0004637 + 0.0000849 = 0.0019179 \text{ m/zod};
G = \max\{0.0001567; 0.0006798; 0.0013467; 0.0021467; 0.0029467\} = 0.0029467 \ \epsilon/c.
M'^{\mathrm{T}}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.405 \, \epsilon;
M''^{\mathrm{T}}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 \ \epsilon;
M^{T}_{330} = (0.405 + 0.211) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002218 \text{ m/zod};
G^{T}_{330} = (0.405 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0001711 \ z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.8692 z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\Pi}_{330} = (0.8692 + 0.211) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001296 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.8692 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0003001 \, z/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 1.675 \ \epsilon;
M''^{X}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{X_{330}} = (1,675 + 0,211) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0003395 \text{ m/zod};
```

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.8166 \, \epsilon;$

55

```
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (2,635+0,211) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001708 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (2,635 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0007906 \, c/c;
M'^{\text{X-15..-20°C}}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 3.595 \ \varepsilon;
M''^{X-15...-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3,595+0,211) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000304 \text{ m/zod};
G_{330} = (3.595 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0010572 \ z/c;
M = 0.0002218 + 0.0001296 + 0.0003395 + 0.0001708 + 0.0000304 = 0.0008921  m/20\partial;
G = \max\{0.0001711; 0.0003001; 0.0005239; 0.0007906; 0.0010572\} = 0.0010572 \ c/c.
M'^{T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 7.974 z;
M''^{\mathrm{T}}_{337} = 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 3.174 \, \varepsilon;
M^{\mathrm{T}}_{337} = (7.974 + 3.174) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0040133 \, \text{m/zod};
G^{T}_{337} = (7.974 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0030967 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 29.1678 \, \epsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\Pi}_{337} = (29,1678 + 3,174) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,003881 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (29,1678 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0089838 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 60.942 \, \epsilon;
M''^{X}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 z;
M^{X}_{337} = (60,942 + 3,174) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0115409 \, \text{m/zod};
G^{X_{337}} = (60.942 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.01781 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 99.342 z;
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (99,342+3,174) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,006151 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (99.342 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0284767 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 137.742 c;
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (137,742 + 3,174) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0011273 \text{ m/200};
G_{337} = (137,742 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0391433 \ \epsilon/c;
M = 0.0040133 + 0.003881 + 0.0115409 + 0.006151 + 0.0011273 = 0.0267135  m/20\partial;
G = \max\{0.0030967; 0.0089838; 0.01781; 0.0284767; 0.0391433\} = 0.0391433  z/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Gamma}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $G^{X}_{330} = (1,675 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0005239 \ \epsilon/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;$

 $M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 2.635 \ \epsilon;$

56

```
M^{T}_{2732} = (1,158 + 0,558) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0006178 \text{ m/zod};
G^{T}_{2732} = (1,158 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0004767 \, c/c;
M^{\prime \Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 4.7874 \, \epsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\Pi}_{2732} = (4.7874 + 0.558) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0006414 \, \text{m/zod};
\mathbf{G}^{\Pi}_{2732} = (4.7874 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0014848 \, \epsilon/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 9.966 \, \epsilon;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{X}_{2732} = (9,966 + 0,558) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0018943 \text{ m/zod};
\mathbf{G}^{X}_{2732} = (9.966 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0029233 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 16,206 \text{ } z;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,206+0,558) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010058 \text{ m/zod};
\mathbf{G}^{X-10..-15^{\circ}C}_{2732} = (16,206 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0046567 \, c/c;
M'^{X-15..-20^{\circ}C}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 22,446 c;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,446+0,558) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000184 \text{ m/200};
G_{2732} = (22,446 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,00639 \ z/c;
M = 0.0006178 + 0.0006414 + 0.0018943 + 0.0010058 + 0.000184 = 0.0043434  m/200;
G = \max\{0.0004767; 0.0014848; 0.0029233; 0.0046567; 0.00639\} = 0.00639 \ \epsilon/c.
Самоходный подъемник Haulotte HA32PX
M^{\prime T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 2.3376 \, \epsilon;
M''^{T}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \varepsilon;
M^{T}_{301} = (2,3376 + 1,5696) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0014066 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,3376 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,0010853 \, \epsilon/c;
M'^{\Pi}_{301} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 5.0256 \, \epsilon;
M^{\prime\prime}^{\Pi}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{\Pi}_{301} = (5,0256 + 1,5696) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0007914 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (5,0256 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,001832 \, z/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 8.4816 z;
M''^{X}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \varepsilon;
M^{X}_{301} = (8,4816 + 1,5696) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0018092 \, \text{m/zod};
G^{X}_{301} = (8.4816 \cdot 1 + 1.5696 \cdot 1) / 3600 = 0.002792 \, z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 13.0896 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 c;
M^{X-10...15^{\circ}C}_{301} = (13,0896 + 1,5696) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0008796 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{301} = (13,0896 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,004072 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 17.6976 \, \epsilon;
M''^{X-15..-20^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 c;
M^{X-15..-20^{\circ}C}_{301} = (17,6976 + 1,5696) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001541 \text{ m/200};
G_{301} = (17.6976 \cdot 1 + 1.5696 \cdot 1) / 3600 = 0.005352 \ z/c;
M = 0.0014066 + 0.0007914 + 0.0018092 + 0.0008796 + 0.0001541 = 0.0050409 \, \text{m/zod};
G = \max\{0.0010853; 0.001832; 0.002792; 0.004072; 0.005352\} = 0.005352 \ \epsilon/c.
M^{\prime T}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.3798 z;
M''^{T}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};$

 $M''^{T}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;$

 $M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 1.158 \, \epsilon;$

 $G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;$ $M = 0 + 0 + 0 + 0 + 0 = 0 \ m/zoo;$ $G = \max\{0; 0; 0; 0; 0\} = 0 \ z/c.$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

57

 $9035.1 - \Pi MOOC 3$

```
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.8166 \, \epsilon;
M^{\prime\prime}\Pi_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 c;
M^{\Pi}_{304} = (0.8166 + 0.255) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001286 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.8166 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0002977 \, \epsilon/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 1.3782 z;
M''^{X}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{X}_{304} = (1,3782 + 0.255) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.000294 \text{ m/zod};
G^{X}_{304} = (1,3782 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0004537 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.127 \text{ } z;
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,127+0,255) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001429 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (2,127 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0006617 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.8758 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (2.8758 + 0.255) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.000025 \text{ m/zod};
G_{304} = (2.8758 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0008697 \ z/c;
M = 0.0002285 + 0.0001286 + 0.000294 + 0.0001429 + 0.000025 = 0.0008191 \text{ m/zod};
G = \max\{0.0001763; 0.0002977; 0.0004537; 0.0006617; 0.0008697\} = 0.0008697 \ \epsilon/c.
M'^{T}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.342 z;
M''^{T}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{T}_{328} = (0.342 + 0.222) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.000203 \text{ m/zod};
G^{T}_{328} = (0.342 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0001567 \ c/c;
M'^{\Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 2.2254 z;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\Pi}_{328} = (2,2254 + 0,222) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0002937 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (2,2254 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0006798 \, \epsilon/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 4.626 \ \epsilon;
M''^{X}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X}_{328} = (4,626 + 0,222) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0008726 \text{ m/zod};
G^{X}_{328} = (4,626 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0013467 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 7.506 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X-10..-15^{\circ}C}_{328} = (7,506+0,222) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004637 \text{ m/200};
G^{X-10..-15^{\circ}C}_{328} = (7,506 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0021467 \ z/c;
M'^{X-15..-20^{\circ}C}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 10.386 c;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (10.386 + 0.222) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000849 \text{ m/zod};
G_{328} = (10,386 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0029467 \ z/c;
M = 0.000203 + 0.0002937 + 0.0008726 + 0.0004637 + 0.0000849 = 0.0019179 \, m/zoo;
G = \max\{0.0001567; 0.0006798; 0.0013467; 0.0021467; 0.0029467\} = 0.0029467 \ c/c.
M'^{T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.405 z;
M''^{T}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{T}_{330} = (0.405 + 0.211) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002218 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.405 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0001711 \, z/c;
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.8692 \ \varepsilon;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\Pi}_{330} = (0.8692 + 0.211) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001296 \text{ m/zod};
G^{\Pi}_{330} = (0.8692 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0003001 \, c/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 1.675 z;
```

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{T}_{304} = (0,3798 + 0,255) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0002285 \text{ m/200};$ $G^{T}_{304} = (0,3798 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0001763 \text{ z/c};$

58

```
\mathbf{G}^{X}_{330} = (1,675 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0005239 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 2.635 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{X-10..-15^{\circ}C}_{330} = (2,635+0,211) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0001708 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{330} = (2,635 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0007906 \ c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 3.595 \ \epsilon;
M''^{X-15...20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3.595 + 0.211) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000304 \text{ m/zod};
G_{330} = (3.595 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0010572 \ z/c;
M = 0.0002218 + 0.0001296 + 0.0003395 + 0.0001708 + 0.0000304 = 0.0008921  m/200;
G = \max\{0,0001711; 0,0003001; 0,0005239; 0,0007906; 0,0010572\} = 0,0010572 \ \epsilon/c.
M^{\prime}^{T}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 7.974 \, \epsilon;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \,\varepsilon;
M^{T}_{337} = (7,974 + 3,174) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0040133 \text{ m/zod};
G^{T}_{337} = (7.974 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0030967 \ z/c;
M^{\prime \Pi_{337}} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 29.1678 \, \epsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \,\epsilon;
M^{\Pi}_{337} = (29,1678 + 3,174) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,003881 \text{ m/200};
\mathbf{G}^{\Pi}_{337} = (29,1678 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0089838 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 60.942 z;
M''^{X}_{337} = 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 3.174 z;
M^{X}_{337} = (60,942 + 3,174) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0115409 \text{ m/zod};
G^{X}_{337} = (60.942 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.01781 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 99.342 z;
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (99.342 + 3.174) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.006151 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (99,342 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0284767 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 137,742 c;
M''^{X-15..-20^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (137,742 + 3,174) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0011273 \text{ m/sod};
G_{337} = (137,742 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0391433 \ z/c;
M = 0.0040133 + 0.003881 + 0.0115409 + 0.006151 + 0.0011273 = 0.0267135  m/200;
G = \max\{0.0030967; 0.0089838; 0.01781; 0.0284767; 0.0391433\} = 0.0391433 \ z/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\mathrm{T}}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \, \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{X}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{X_{330}} = (1,675 + 0.211) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0003395 \text{ m/zod};$

59

```
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 \ \epsilon/c.
M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 1.158 z;
M''^{T}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 c;
M^{\mathrm{T}}_{2732} = (1,158 + 0,558) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0006178 \, \text{m/zod};
G^{T}_{2732} = (1,158 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0004767 \, c/c;
M'^{\Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 4.7874 c;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{\Pi}_{2732} = (4,7874 + 0,558) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0006414 \, \text{m/zod};
\mathbf{G}^{\Pi}_{2732} = (4.7874 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0014848 \, \epsilon/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 9.966 c;
M''^{X}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{X}_{2732} = (9,966 + 0,558) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0018943 \text{ m/zod};
G^{X}_{2732} = (9.966 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0029233 \ z/c;
M^{\prime X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 16,206 c;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,206+0,558) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010058 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,206 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0046567 \ c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 22,446 \text{ c};
M''^{X-15...20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,446 + 0,558) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000184 \text{ m/sod};
G_{2732} = (22,446 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.00639 \ z/c;
M = 0.0006178 + 0.0006414 + 0.0018943 + 0.0010058 + 0.000184 = 0.0043434 \, \text{m/zod};
G = \max\{0.0004767; 0.0014848; 0.0029233; 0.0046567; 0.00639\} = 0.00639 \ \epsilon/c.
Автомобиль-тягач КамАЗ-65116 с полуприцепом
M^{\prime T}_{301} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 \ \varepsilon;
M''^{\mathrm{T}}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{\mathrm{T}}_{301} = (9,2592 + 7,2272) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0148378 \, \text{m/zod};
\mathbf{G}^{\mathrm{T}}_{30I} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \, z/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \varepsilon;
M^{\prime\prime}\Pi_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
\mathbf{M}^{\Pi}_{301} = (16,3952 + 7,2272) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0070867 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (16,3952 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 c;
M''^{X}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{X}_{30I} = (25,5632 + 7,2272) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0147557 \text{ m/sod};
\mathbf{G}^{X}_{301} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{30I} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{30I} = (37,7872 + 7,2272) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0067522 \text{ m/200};
\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{30I} = (37,7872 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,012504 \, z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 \text{ } z;
M''^{X-15...-20^{\circ}C}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\text{X-15..-20°C}}_{301} = (50,0112 + 7,2272) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0011448 \text{ m/sod};
G_{301} = (50,0112 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0158996 \ z/c;
M = 0.0148378 + 0.0070867 + 0.0147557 + 0.0067522 + 0.0011448 = 0.0445771  m/200;
G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996 \ \epsilon/c.
```

 $9035.1 - \Pi MOOC 3$

 $M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;$ $M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 m/200;$

 $G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

60

```
G^{T}_{304} = (1.5042 \cdot 1 + 1.1742 \cdot 1) / 3600 = 0.000744 \ z/c;
M^{\prime \Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 z;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\Pi}_{304} = (2,664 + 1,1742) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0011515 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \, \epsilon/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 c;
M''^{X}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 z;
M^{X}_{304} = (4,1538 + 1,1742) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0023976 \text{ m/zod};
G^{X}_{304} = (4.1538 \cdot 1 + 1.1742 \cdot 1) / 3600 = 0.00148 \, \epsilon/c;
M'^{X-10...15^{\circ}C}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{X-10..-15^{\circ}C}_{304} = (6,1402+1,1742) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0010972 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (8.1266 + 1.1742) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.000186 \text{ m/zod};
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
M = 0.0024106 + 0.0011515 + 0.0023976 + 0.0010972 + 0.000186 = 0.0072428  m/20\partial;
G = \max\{0.000744; 0.0010662; 0.00148; 0.0020318; 0.0025836\} = 0.0025836 \ z/c.
M'^{T}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 z;
M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \, \epsilon;
M^{T}_{328} = (1.374 + 1.034) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0021672 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ z/c;
M'^{\Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 z;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0023635 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (6.8444 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0021884 \, \epsilon/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 13,706 \ \epsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{X}_{328} = (13,706 + 1,034) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,006633 \text{ m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \, \epsilon/c;
M'^{X-10...15^{\circ}C}_{328} = 1.02 \cdot 20 + 1.08 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 21.866 c
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (21,866 + 1,034) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,003435 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611 \ z/c;
M'^{X-15...20^{\circ}C}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0006212 \text{ m/zod};
G_{328} = (30.026 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0086278 \ z/c;
M = 0.0021672 + 0.0023635 + 0.006633 + 0.003435 + 0.0006212 = 0.0152199 \text{ m/zod};
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278 \ \epsilon/c.
M^{\prime T}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 c;
M''^{T}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{T}_{330} = (1.362 + 0.862) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0020016 \text{ m/zod};
G^{T}_{330} = (1,362 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0006178 \ z/c;
M'^{\Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 z;
M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\Pi_{330}} = (2,6044 + 0,862) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0010399 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

 $M'^{\mathrm{T}}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 \, \epsilon;$

 $M^{T}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0024106 \text{ m/zod};$

 $M''^{T}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

```
M^{X}_{330} = (4,726 + 0,862) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0025146 \text{ m/zod};
G^{X}_{330} = (4.726 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.0015522 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (7,206+0,862) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0012102 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ \text{z/c};
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (9,686 + 0,862) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,000211 \text{ m/200};
G_{330} = (9.686 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.00293 \ z/c;
M = 0.0020016 + 0.0010399 + 0.0025146 + 0.0012102 + 0.000211 = 0.0069773  m/200;
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293 \ c/c.
M'^{T}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 c;
M''^{T}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{T}_{337} = (22.954 + 10.354) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.0299772 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{337} = (22.954 \cdot 1 + 10.354 \cdot 1) / 3600 = 0.0092522 \, \epsilon/c;
M^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \ \varepsilon;
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\Pi}_{337} = (78,7888 + 10,354) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0267428 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (78,7888 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0247619 \ z/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 c;
M''^{X}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0777582 \text{ m/zod};
M'^{X-10..-15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 263.242 z;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (263,242 + 10,354) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0410394 \text{ m/200};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ c/c;
M'^{X-15..-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 c;
M''^{X-15..-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (364,042 + 10,354) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0074879 \text{ m/zod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0299772 + 0.0267428 + 0.0777582 + 0.0410394 + 0.0074879 = 0.1830056  m/200;
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ z/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \epsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 5 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0  2;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

 $G^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \ \epsilon/c;$ $M^{\prime}_{330} = 0,31 \cdot 12 + 0,63 \cdot 0,1 / 5 \cdot 60 + 0,25 \cdot 1 = 4,726 \ \epsilon;$

 $M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

62

```
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 5 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/sod};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 \ \epsilon;
M''^{\mathrm{T}}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \varepsilon;
M^{\mathrm{T}}_{2732} = (3,738 + 2,158) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0053064 \, \text{m/zod};
G^{T}_{2732} = (3.738 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.0016378 \ z/c;
M'^{\Pi}_{2732} = 1,845 \cdot 6 + 1,233 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 13,3396 c;
M''^{\Pi}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0046493 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13,3396 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0043049 \, \epsilon/c;
M'^{X}_{2732} = 2,05 \cdot 12 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 27,034 \, \epsilon;
M''^{X}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \epsilon;
M^{X}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0131364 \text{ m/sod};
G^{X}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \ z/c;
M'^{X-10..-15^{\circ}C}_{2732} = 2,05 \cdot 20 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 43,434 \ \epsilon;
M''^{X-10...-15^{\circ}C}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 z;
M^{X-10..-15^{\circ}C}_{2732} = (43.434 + 2.158) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0068388 \, \text{m/200};
G^{X-10..-15^{\circ}C}_{2732} = (43,434 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0126644 z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \epsilon;
M^{X-15...20^{\circ}C}_{2732} = (59.834 + 2.158) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0012398 \text{ m/zod};
G_{2732} = (59.834 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.01722 \ z/c;
M = 0.0053064 + 0.0046493 + 0.0131364 + 0.0068388 + 0.0012398 = 0.0311707 \text{ m/zod};
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ z/c.
Автомобиль-тягач КамАЗ-65116 с низкорамным полуприцепом
M^{\prime T}_{301} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 c;
M''^{T}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{T}_{301} = (9,2592 + 7,2272) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0059351 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{301} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \, \epsilon/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \epsilon;
M''^{\Pi}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\Pi_{30I}} = (16.3952 + 7.2272) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0028347 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (16.3952 \cdot 1 + 7.2272 \cdot 1) / 3600 = 0.0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 \ \epsilon;
M''^{X}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{X_{30I}} = (25,5632 + 7,2272) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0059023 \text{ m/zod};
\mathbf{G}^{X}_{301} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\text{X}-10...15^{\circ}\text{C}}_{301} = (37,7872 + 7,2272) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0027009 \text{ m/zod};
\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{30I} = (37,7872 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,012504 \, c/c;
M'^{X-15..-20^{\circ}C}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 c;
M''^{X-15...-20^{\circ}C}_{30I} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{\text{X-15...20°C}}_{301} = (50,0112 + 7,2272) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0004579 \text{ m/zod};
G_{301} = (50,0112 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0158996  z/c;
```

 $9035.1 - \Pi MOOC 3$

 $M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};$ $G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \text{ z/c};$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

63

```
M^{T}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0009642 \text{ m/zod};
G^{T}_{304} = (1,5042 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,000744 \ z/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 \, \epsilon;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\Pi}_{304} = (2,664 + 1,1742) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0004606 \, \text{m/zod};
G^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \, c/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 z;
M''^{X_{304}} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon:
M^{X_{304}} = (4.1538 + 1.1742) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.000959 \text{ m/zod};
G^{X}_{304} = (4,1538 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,00148 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 c;
M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (6,1402+1,1742) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004389 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (8,1266+1,1742) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000744 \text{ m/zod};
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
M = 0.0009642 + 0.0004606 + 0.000959 + 0.0004389 + 0.0000744 = 0.0028971  m/200;
G = \max\{0.000744; 0.0010662; 0.00148; 0.0020318; 0.0025836\} = 0.0025836 \ \epsilon/c.
M'^{\mathrm{T}}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 \, \epsilon;
M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \varepsilon;
M^{T}_{328} = (1,374 + 1,034) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0008669 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ z/c;
M'^{\Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 z;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0009454 \, \text{m/zod};
G^{\Pi}_{328} = (6,8444 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0021884 \, c/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 13,706 \ \varepsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{X_{328}} = (13.706 + 1.034) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0026532 \text{ m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 21,866 \text{ } \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (21,866 + 1,034) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,001374 \text{ m/sod};
G^{X-10.-15^{\circ}C}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611 \ z/c;
M'^{X-15..-20^{\circ}C}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 c;
M''^{X-15..-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0002485 \text{ m/zod};
G_{328} = (30,026 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0086278 \ egc;
M = 0.0008669 + 0.0009454 + 0.0026532 + 0.001374 + 0.0002485 = 0.006088 \, \text{m/zod};
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278  \epsilon/c.
M^{\prime T}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 c;
M''^{\mathrm{T}}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \varepsilon;
M^{T}_{330} = (1,362 + 0,862) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0008006 \text{ m/zod};
G^{T}_{330} = (1,362 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0006178 \ z/c;
M^{\prime \Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 c;
```

 $9035.1 - \Pi MOOC 3$

M = 0.0059351 + 0.0028347 + 0.0059023 + 0.0027009 + 0.0004579 = 0.0178308 m/200; $G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996$ z/c.

 $M'^{T}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 c;$

 $M''^{\mathrm{T}}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

64

```
M^{\Pi}_{330} = (2,6044 + 0,862) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,000416 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \ z/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 4.726 z;
M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{X}_{330} = (4,726 + 0,862) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0010058 \text{ m/zod};
G^{X}_{330} = (4,726 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0015522 \ z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 c
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{330} = (7,206 + 0,862) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0004841 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 c
M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{X-15...20^{\circ}C}_{330} = (9.686 + 0.862) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000844 \, \text{m/zod};
G_{330} = (9,686 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,00293 \ z/c;
M = 0.0008006 + 0.000416 + 0.0010058 + 0.0004841 + 0.0000844 = 0.0027909  m/200;
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293 \ c/c.
M'^{T}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 c;
M''^{T}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 c;
M^{T}_{337} = (22,954 + 10,354) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0119909 \text{ m/cod};
\mathbf{G}^{\mathrm{T}}_{337} = (22.954 \cdot 1 + 10.354 \cdot 1) / 3600 = 0.0092522 \, \epsilon/c;
M^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \ \varepsilon;
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\Pi_{337}} = (78,7888 + 10,354) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0106971 \text{ m/zod};
G^{\Pi}_{337} = (78.7888 \cdot 1 + 10.354 \cdot 1) / 3600 = 0.0247619 \ z/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 c;
M''^{X}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0311033 \text{ m/200};
G^{X_{337}} = (162,442 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0479989 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 263.242 z;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{\text{X-}10..-15^{\circ}\text{C}}_{337} = (263,242 + 10,354) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0164158 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ c/c;
M'^{X-15...-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 z;
M''^{X-15..-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \, \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (364,042 + 10,354) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0029952 \text{ m/zod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0119909 + 0.0106971 + 0.0311033 + 0.0164158 + 0.0029952 = 0.0732022 \text{ m/zod};
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ c/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M^{\prime \Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
\mathbf{M}^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

```
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\text{X -}10..-15^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\text{X-15..-20°C}}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 \, \varepsilon;
M''^{\mathrm{T}}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \varepsilon;
M^{T}_{2732} = (3.738 + 2.158) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0021226 \text{ m/zod};
G^{T}_{2732} = (3.738 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.0016378 \ z/c;
M'^{\Pi}_{2732} = 1,845 \cdot 6 + 1,233 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 13,3396 \ \epsilon;
M''^{\Pi}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 c;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0018597 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13,3396 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0043049 \, \epsilon/c;
M'^{X}_{2732} = 2.05 \cdot 12 + 1.37 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 27.034 z;
M''^{X}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \ \epsilon;
M^{X}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0052546 \text{ m/zod};
G^{X}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \ \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 2.05 \cdot 20 + 1.37 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 43.434 \text{ z};
M''^{X-10..-15^{\circ}C}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2732} = (43,434+2,158) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0027355 \text{ m/200};
G^{X-10..-15^{\circ}C}_{2732} = (43,434 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0126644 z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (59,834 + 2,158) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0004959 \text{ m/zod};
G_{2732} = (59.834 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.01722 \ z/c;
M = 0.0021226 + 0.0018597 + 0.0052546 + 0.0027355 + 0.0004959 = 0.0124683 \, \text{m/zod};
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ z/c.
Автомобиль-самосвал КамАЗ-6520
M^{\prime T}_{301} = 1,6 \cdot 2 + 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 14,5456 c;
M''^{\mathrm{T}}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \varepsilon;
M^{T}_{30I} = (14,5456 + 11,3456) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0233021 \text{ m/sod};
\mathbf{G}^{\mathrm{T}}_{301} = (14,5456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,007192 \, \varepsilon/c;
M'^{\Pi}_{301} = 2.4 \cdot 6 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 25.7456 \ \epsilon
M''^{\Pi}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \, \varepsilon;
M^{\Pi}_{30I} = (25,7456 + 11,3456) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0111274 \text{ m/sod};
\mathbf{G}^{\Pi}_{301} = (25,7456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0103031 \, z/c;
M'^{X}_{301} = 2.4 \cdot 12 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 40.1456 c;
M''^{X}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \ \epsilon;
M^{X}_{301} = (40,1456 + 11,3456) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,023171 \text{ m/zod};
\mathbf{G}^{X}_{301} = (40,1456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0143031 \ z/c;
M'^{X-10..-15^{\circ}C}_{301} = 2.4 \cdot 20 + 8.128 \cdot 0.1 / 5 \cdot 60 + 1.592 \cdot 1 = 59.3456 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (59,3456 + 11,3456) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0106037 \text{ m/zod};
\mathbf{G}^{\text{X-10..-15°C}}_{301} = (59.3456 \cdot 1 + 11.3456 \cdot 1) / 3600 = 0.0196364 \, z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 2,4 \cdot 28 + 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 78,5456 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{301} = 8,128 \cdot 0,1 / 5 \cdot 60 + 1,592 \cdot 1 = 11,3456 \,\varepsilon;
```

 $9035.1 - \Pi MOOC 3$

 $M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

```
M^{\text{X}-15...20^{\circ}\text{C}}_{30I} = (78,5456 + 11,3456) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0017978 \text{ m/200};
G_{301} = (78,5456 \cdot 1 + 11,3456 \cdot 1) / 3600 = 0,0249698 \ z/c;
M = 0.0233021 + 0.0111274 + 0.023171 + 0.0106037 + 0.0017978 = 0.070002 \text{ m/zod};
G = \max\{0.007192; 0.0103031; 0.0143031; 0.0196364; 0.0249698\} = 0.0249698 \ z/c.
M^{\prime T}_{304} = 0.26 \cdot 2 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 2.3639 \ \epsilon;
M''^{T}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \epsilon;
M^{\mathrm{T}}_{304} = (2,3639 + 1,8439) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,003787 \, \text{m/zod};
G^{T}_{304} = (2.3639 \cdot 1 + 1.8439 \cdot 1) / 3600 = 0.0011688 \ z/c;
M'^{\Pi}_{304} = 0.39 \cdot 6 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 4.1839 z;
M''^{\Pi}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \varepsilon;
M^{\Pi}_{304} = (4.1839 + 1.8439) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0018083 \, \text{m/zod};
\mathbf{G}^{\Pi_{304}} = (4.1839 \cdot 1 + 1.8439 \cdot 1) / 3600 = 0.0016744 \, z/c;
M'^{X}_{304} = 0.39 \cdot 12 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 6.5239 z;
M''^{X}_{304} = 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 1.8439 \ \epsilon;
M^{X}_{304} = (6,5239 + 1,8439) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0037655 \text{ m/zod};
\mathbf{G}^{X}_{304} = (6,5239 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0023244 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.39 \cdot 20 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 9.6439 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (9,6439 + 1,8439) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0017232 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (9,6439 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0031911 \ z/c;
M'^{X-15..-20^{\circ}C}_{304} = 0.39 \cdot 28 + 1.321 \cdot 0.1 / 5 \cdot 60 + 0.2587 \cdot 1 = 12,7639 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 1,321 \cdot 0,1 / 5 \cdot 60 + 0,2587 \cdot 1 = 1,8439 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (12.7639 + 1.8439) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0002922 \text{ m/zod};
G_{304} = (12,7639 \cdot 1 + 1,8439 \cdot 1) / 3600 = 0,0040577 \ z/c;
M = 0.003787 + 0.0018083 + 0.0037655 + 0.0017232 + 0.0002922 = 0.0113762 \, m/cod;
G = \max\{0.0011688; 0.0016744; 0.0023244; 0.0031911; 0.0040577\} = 0.0040577 \ c/c.
M'^{T}_{328} = 0.26 \cdot 2 + 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 2.136 c;
M''^{\mathrm{T}}_{328} = 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 1.616 \, \epsilon;
M^{T}_{328} = (2,136 + 1,616) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0033768 \text{ m/zod};
G^{T}_{328} = (2,136 \cdot 1 + 1,616 \cdot 1) / 3600 = 0,0010422 \ z/c;
M'^{\Pi}_{328} = 1,404 \cdot 6 + 1,53 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 10,52 \ \epsilon;
M''^{\Pi}_{328} = 1,13 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 1,616 \ \epsilon;
M^{\Pi}_{328} = (10.52 + 1.616) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0036408 \text{ m/zod};
G^{\Pi}_{328} = (10.52 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0033711 \, c/c;
M'^{X}_{328} = 1,56 \cdot 12 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 21,02 \ \epsilon;
M''^{X}_{328} = 1,13 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 1,616 \ \epsilon;
M^{X}_{328} = (21,02 + 1,616) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0101862 \text{ m/zod};
G^{X}_{328} = (21,02 \cdot 1 + 1,616 \cdot 1) / 3600 = 0,0062878 \ z/c;
M'^{X-10..-15^{\circ}C}_{328} = 1,56 \cdot 20 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 33,5 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{328} = 1.13 \cdot 0.1 / 5 \cdot 60 + 0.26 \cdot 1 = 1.616 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (33.5 + 1.616) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0052674 \text{ m/200};
G^{X-10..-15^{\circ}C}_{328} = (33.5 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0097544 \, c/c;
M'^{X-15..-20^{\circ}C}_{328} = 1,56 \cdot 28 + 1,7 \cdot 0,1 / 5 \cdot 60 + 0,26 \cdot 1 = 45,98 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{328} = 1{,}13 \cdot 0{,}1 / 5 \cdot 60 + 0{,}26 \cdot 1 = 1{,}616 \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (45.98 + 1.616) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0009519 \text{ m/zod};
G_{328} = (45.98 \cdot 1 + 1.616 \cdot 1) / 3600 = 0.0132211 \ z/c;
M = 0.0033768 + 0.0036408 + 0.0101862 + 0.0052674 + 0.0009519 = 0.0234231 \text{ m/zod};
G = \max\{0,0010422; 0,0033711; 0,0062878; 0,0097544; \underline{0,0132211}\} = 0,0132211 \ z/c.
M'^{\mathrm{T}}_{330} = 0.26 \cdot 2 + 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.87 \ \varepsilon;
M''^{\mathrm{T}}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 \ \varepsilon;
M^{T}_{330} = (1.87 + 1.35) \cdot 180 \cdot 5 \cdot 10^{-6} = 0.002898 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

```
M''^{\Pi}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 c;
M^{\Pi}_{330} = (3.1764 + 1.35) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0013579 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (3,1764 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0012573 \ \epsilon/c;
M'^{X}_{330} = 0.32 \cdot 12 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 5.406 c
M''^{X}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 z;
M^{X}_{330} = (5,406 + 1,35) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,0030402 \text{ m/zod};
G^{X}_{330} = (5,406 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0018767 \ z/c;
M^{X-10..-15^{\circ}C}_{330} = 0.32 \cdot 20 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 7.966 c;
M''^{X-10..-15^{\circ}C}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 z;
M^{X-10..-15^{\circ}C}_{330} = (7.966 + 1.35) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0013974 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{330} = (7,966 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0025878 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{330} = 0.32 \cdot 28 + 0.98 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 10.526 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.8 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 1.35 \ \epsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{330} = (10,526 + 1,35) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0002375 \text{ m/zod};
G_{330} = (10,526 \cdot 1 + 1,35 \cdot 1) / 3600 = 0,0032989 \ e/c;
M = 0.002898 + 0.0013579 + 0.0030402 + 0.0013974 + 0.0002375 = 0.008931 \text{ m/zod};
G = \max\{0.0008944; 0.0012573; 0.0018767; 0.0025878; 0.0032989\} = 0.0032989 \ \epsilon/c.
M'^{T}_{337} = 9.9 \cdot 2 + 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 36.08 \ \varepsilon;
M''^{\mathrm{T}}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \varepsilon;
M^{T}_{337} = (36,08 + 16,28) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,047124 \text{ m/zod};
G^{T}_{337} = (36,08 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,0145444 \, z/c;
M'^{\Pi}_{337} = 16,92 \cdot 6 + 5,823 \cdot 0,1 / 5 \cdot 60 + 9,92 \cdot 1 = 118,4276 \ \varepsilon;
M''^{\Pi}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{\Pi}_{337} = (118,4276 + 16,28) \cdot 60 \cdot 5 \cdot 10^{-6} = 0,0404123 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (118,4276 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,0374188 \, \epsilon/c;
M'^{X}_{337} = 18.8 \cdot 12 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 243.284 z;
M''^{X}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{X}_{337} = (243,284 + 16,28) \cdot 90 \cdot 5 \cdot 10^{-6} = 0,1168038 \, \text{m/zod};
G^{X}_{337} = (243,284 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,0721011  z/c;
M^{\prime X-10...15^{\circ}C}_{337} = 18.8 \cdot 20 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 393.684 c;
M''^{X-10..-15^{\circ}C}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (393,684 + 16,28) \cdot 30 \cdot 5 \cdot 10^{-6} = 0,0614946 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (393,684 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,1138789 \ c/c;
M'^{X-15..-20^{\circ}C}_{337} = 18.8 \cdot 28 + 6.47 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 544.084 c;
M''^{X-15..-20^{\circ}C}_{337} = 5.3 \cdot 0.1 / 5 \cdot 60 + 9.92 \cdot 1 = 16.28 \ \epsilon;
M^{X-15..-20^{\circ}C}_{337} = (544,084 + 16,28) \cdot 4 \cdot 5 \cdot 10^{-6} = 0,0112073 \text{ m/sod};
G_{337} = (544,084 \cdot 1 + 16,28 \cdot 1) / 3600 = 0,1556567 \ z/c;
M = 0.047124 + 0.0404123 + 0.1168038 + 0.0614946 + 0.0112073 = 0.277042 \text{ m/zod};
G = \max\{0.0145444; 0.0374188; 0.0721011; 0.1138789; 0.1556567\} = 0.1556567 \ c/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 5 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
```

 $9035.1 - \Pi MOOC 3$

 $G^{T}_{330} = (1.87 \cdot 1 + 1.35 \cdot 1) / 3600 = 0.0008944 \ z/c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\Pi}_{330} = 0.288 \cdot 6 + 0.882 \cdot 0.1 / 5 \cdot 60 + 0.39 \cdot 1 = 3.1764 \, \varepsilon;$

68

 $9035.1 - \Pi MOOC 3$

```
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 5 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 5 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{T}_{2732} = 1,24 \cdot 2 + 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 5,868 \ \epsilon;
M''^{T}_{2732} = 1.79 \cdot 0.1 / 5 \cdot 60 + 1.24 \cdot 1 = 3.388 c;
M^{\mathrm{T}}_{2732} = (5,868 + 3,388) \cdot 180 \cdot 5 \cdot 10^{-6} = 0,0083304 \, \text{m/zod};
G^{T}_{2732} = (5.868 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0025711 \ z/c;
M'^{\Pi}_{2732} = 2,898 \cdot 6 + 1,935 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 20,95 \ \epsilon;
M''^{\Pi}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{\Pi}_{2732} = (20.95 + 3.388) \cdot 60 \cdot 5 \cdot 10^{-6} = 0.0073014 \, \text{m/cod};
\mathbf{G}^{\Pi}_{2732} = (20.95 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0067606 \, \epsilon/c;
M'^{X}_{2732} = 3,22 \cdot 12 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 42,46 c;
M''^{X}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{X}_{2732} = (42.46 + 3.388) \cdot 90 \cdot 5 \cdot 10^{-6} = 0.0206316 \text{ m/zod};
G^{X}_{2732} = (42,46 \cdot 1 + 3,388 \cdot 1) / 3600 = 0,0127356 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 3,22 \cdot 20 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 68,22 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{X-10..-15^{\circ}C}_{2732} = (68,22+3,388) \cdot 30 \cdot 5 \cdot 10^{-6} = 0.0107412 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (68,22 \cdot 1 + 3,388 \cdot 1) / 3600 = 0,0198911 \ z/c;
M'^{X-15..-20^{\circ}C}_{2732} = 3,22 \cdot 28 + 2,15 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 93,98 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,79 \cdot 0,1 / 5 \cdot 60 + 1,24 \cdot 1 = 3,388 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{2732} = (93.98 + 3.388) \cdot 4 \cdot 5 \cdot 10^{-6} = 0.0019474 \text{ m/200};
G_{2732} = (93.98 \cdot 1 + 3.388 \cdot 1) / 3600 = 0.0270467 \, e/c;
M = 0.0083304 + 0.0073014 + 0.0206316 + 0.0107412 + 0.0019474 = 0.048952 \text{ m/zod};
G = \max\{0.0025711; 0.0067606; 0.0127356; 0.0198911; 0.0270467\} = 0.0270467 \ c/c.
Автомобиль бортовой КамАЗ-53212
M'^{T}_{301} = 1,016 \cdot 2 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 9,2592 \ \epsilon;
M''^{\mathrm{T}}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{T}_{301} = (9.2592 + 7.2272) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0207729 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (9,2592 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0045796 \, \epsilon/c;
M'^{\Pi}_{301} = 1,528 \cdot 6 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 16,3952 \ \epsilon;
M''^{\Pi}_{301} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \varepsilon;
M^{\Pi}_{30l} = (16.3952 + 7.2272) \cdot 60 \cdot 7 \cdot 10^{-6} = 0.0099214 \text{ m/zod};
\mathbf{G}^{\Pi}_{30I} = (16,3952 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0065618 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 25,5632 \ \epsilon;
M''^{X}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
\mathbf{M}^{\mathbf{X}}_{301} = (25,5632 + 7,2272) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,020658 \, \text{m/zod};
\mathbf{G}^{X_{301}} = (25,5632 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,0091084 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 37,7872 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5{,}176 \cdot 0{,}1 / 5 \cdot 60 + 1{,}016 \cdot 1 = 7{,}2272 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (37,7872 + 7,2272) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,009453 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{30I} = (37,7872 \cdot 1 + 7,2272 \cdot 1) / 3600 = 0,012504 \ z/c;
```

 $\mathbf{M}^{X}_{2704} = (0+0) \cdot 90 \cdot 5 \cdot 10^{-6} = 0 \text{ m/200};$ $\mathbf{G}^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \text{ z/c};$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

69

```
M^{\text{X-15..-20}^{\circ}\text{C}}_{30I} = (50,0112 + 7,2272) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0016027 \text{ m/zod};
G_{301} = (50.0112 \cdot 1 + 7.2272 \cdot 1) / 3600 = 0.0158996 \ z/c;
M = 0.0207729 + 0.0099214 + 0.020658 + 0.009453 + 0.0016027 = 0.0624079 \, \text{m/zod};
G = \max\{0.0045796; 0.0065618; 0.0091084; 0.012504; 0.0158996\} = 0.0158996 \ z/c.
M'^{T}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.5042 z;
M''^{\mathrm{T}}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \varepsilon;
M^{\mathrm{T}}_{304} = (1,5042 + 1,1742) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0033748 \text{ m/zod};
G^{T}_{304} = (1,5042 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,000744 \, \epsilon/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 2.664 c;
M''^{\Pi}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\Pi_{304}} = (2,664 + 1,1742) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,001612 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (2,664 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0010662 \, \epsilon/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 4.1538 \ \epsilon;
M''^{X}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{X}_{304} = (4,1538 + 1,1742) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0033566 \text{ m/200};
\mathbf{G}^{X}_{304} = (4,1538 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,00148 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 6.1402 \text{ z};
M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (6,1402+1,1742) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,001536 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (6,1402 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0020318 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 8.1266 \text{ } z;
M''^{X-15...-20^{\circ}C}_{304} = 0.841 \cdot 0.1 / 5 \cdot 60 + 0.165 \cdot 1 = 1.1742 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (8.1266 + 1.1742) \cdot 4 \cdot 7 \cdot 10^{-6} = 0.0002604 \, \text{m/zod};
G_{304} = (8,1266 \cdot 1 + 1,1742 \cdot 1) / 3600 = 0,0025836 \ z/c;
M = 0.0033748 + 0.001612 + 0.0033566 + 0.001536 + 0.0002604 = 0.0101399 \text{ m/zod};
G = \max\{0.000744; 0.0010662; 0.00148; 0.0020318; 0.0025836\} = 0.0025836 \ z/c.
M'^{\mathrm{T}}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.374 \, \epsilon;
M''^{T}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{T}_{328} = (1,374 + 1,034) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0030341 \text{ m/zod};
G^{T}_{328} = (1,374 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0006689 \ z/c;
M^{\Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 6.8444 c;
M''^{\Pi}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{\Pi}_{328} = (6.8444 + 1.034) \cdot 60 \cdot 7 \cdot 10^{-6} = 0.0033089 \, \text{m/200};
G^{\Pi}_{328} = (6.8444 \cdot 1 + 1.034 \cdot 1) / 3600 = 0.0021884 \, c/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 13,706 \ \epsilon;
M''^{X}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 \ \epsilon;
M^{X}_{328} = (13,706 + 1,034) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0092862 \text{ m/zod};
G^{X}_{328} = (13,706 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0040944 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 21,866 c;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (21,866+1,034) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,004809 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (21,866 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0063611 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,1 / 5 \cdot 60 + 0,17 \cdot 1 = 30,026 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.72 \cdot 0.1 / 5 \cdot 60 + 0.17 \cdot 1 = 1.034 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (30,026+1,034) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0008697 \text{ m/zod};
G_{328} = (30,026 \cdot 1 + 1,034 \cdot 1) / 3600 = 0,0086278 \ e/c;
M = 0.0030341 + 0.0033089 + 0.0092862 + 0.004809 + 0.0008697 = 0.0213079  m/20\partial;
G = \max\{0.0006689; 0.0021884; 0.0040944; 0.0063611; 0.0086278\} = 0.0086278 \ c/c.
M^{\prime}^{T}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 1.362 c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 1,528 \cdot 28 + 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 50,0112 \ \epsilon;$

 $M''^{X-15..-20^{\circ}C}_{30I} = 5,176 \cdot 0,1 / 5 \cdot 60 + 1,016 \cdot 1 = 7,2272 \ \epsilon;$

70

```
M^{\prime \Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 2.6044 z;
M''^{\Pi}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\Pi}_{330} = (2,6044 + 0,862) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0014559 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,6044 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0009629 \ z/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 4.726 c;
M''^{X}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{X}_{330} = (4,726 + 0,862) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0035204 \text{ m/zod};
G^{X}_{330} = (4,726 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0015522 \ z/c;
M'^{X-10...-15^{\circ}C}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 7.206 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (7,206+0,862) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0016943 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (7,206 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0022411 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 9.686 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 c;
M^{X-15...20^{\circ}C}_{330} = (9,686+0,862) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0002953 \text{ m/zod};
G_{330} = (9.686 \cdot 1 + 0.862 \cdot 1) / 3600 = 0.00293 \ z/c;
M = 0.0028022 + 0.0014559 + 0.0035204 + 0.0016943 + 0.0002953 = 0.0097682 \, \text{m/zod};
G = \max\{0.0006178; 0.0009629; 0.0015522; 0.0022411; 0.00293\} = 0.00293  \epsilon/c.
M'^{\mathrm{T}}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 22.954 \, \epsilon;
M''^{T}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{T}_{337} = (22,954 + 10,354) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0419681 \text{ m/cod};
G^{T}_{337} = (22.954 \cdot 1 + 10.354 \cdot 1) / 3600 = 0.0092522    z/c;
M^{\prime \Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,1 / 5 \cdot 60 + 6,31 \cdot 1 = 78,7888 \ \varepsilon;
M''^{\Pi}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \, \epsilon;
M^{\Pi}_{337} = (78,7888 + 10,354) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,03744 \, \text{m/200};
G^{\Pi}_{337} = (78,7888 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0247619 \ z/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 162.442 c;
M''^{X}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 z;
M^{X}_{337} = (162,442 + 10,354) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,1088615 \text{ m/zod};
G^{X}_{337} = (162,442 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0479989 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 263.242 c;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 c;
M^{X-10..-15^{\circ}C}_{337} = (263,242+10,354) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0574552 \text{ m/200};
G^{X-10..-15^{\circ}C}_{337} = (263,242 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,0759989 \ e/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 364.042 \text{ z};
M''^{X-15...-20^{\circ}C}_{337} = 3.37 \cdot 0.1 / 5 \cdot 60 + 6.31 \cdot 1 = 10.354 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (364,042+10,354) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0104831 \text{ m/zod};
G_{337} = (364,042 \cdot 1 + 10,354 \cdot 1) / 3600 = 0,1039989 \ z/c;
M = 0.0419681 + 0.03744 + 0.1088615 + 0.0574552 + 0.0104831 = 0.256208 \, \text{m/zod};
G = \max\{0.0092522; 0.0247619; 0.0479989; 0.0759989; 0.1039989\} = 0.1039989 \ \epsilon/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
```

 $9035.1 - \Pi MOOC 3$

 $M''^{T}_{330} = 0.51 \cdot 0.1 / 5 \cdot 60 + 0.25 \cdot 1 = 0.862 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{T}_{330} = (1,362 + 0,862) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0028022 \text{ m/200};$ $G^{T}_{330} = (1,362 \cdot 1 + 0,862 \cdot 1) / 3600 = 0,0006178 \text{ z/c};$

71

 $9035.1 - \Pi MOOC 3$

```
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 7 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 7 \cdot 10^{-6} = 0 \text{ m/soo};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 3.738 \, \varepsilon;
M''^{\mathrm{T}}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \, \varepsilon;
M^{T}_{2732} = (3.738 + 2.158) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.007429 \text{ m/zod};
G^{T}_{2732} = (3,738 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0016378 \ z/c;
M'^{\Pi}_{2732} = 1.845 \cdot 6 + 1.233 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 13.3396 \, \epsilon;
M''^{\Pi}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 \, \epsilon;
M^{\Pi}_{2732} = (13,3396 + 2,158) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,006509 \text{ m/zod};
\mathbf{G}^{\Pi}_{2732} = (13,3396 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0043049 \, \epsilon/c;
M'^{X}_{2732} = 2.05 \cdot 12 + 1.37 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 27.034 z;
M''^{X}_{2732} = 1.14 \cdot 0.1 / 5 \cdot 60 + 0.79 \cdot 1 = 2.158 \epsilon;
M^{X}_{2732} = (27,034 + 2,158) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,018391 \text{ m/sod};
G^{X}_{2732} = (27,034 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0081089 \ z/c;
M'^{X-10..-15^{\circ}C}_{2732} = 2,05 \cdot 20 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 43,434 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 z;
M^{X-10..-15^{\circ}C}_{2732} = (43,434+2,158) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0095743 \text{ m/200};
G^{X-10..-15^{\circ}C}_{2732} = (43,434 \cdot 1 + 2,158 \cdot 1) / 3600 = 0,0126644 \, c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = 2,05 \cdot 28 + 1,37 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 59,834 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,1 / 5 \cdot 60 + 0,79 \cdot 1 = 2,158 c;
M^{\text{X-15..-20°C}}_{2732} = (59,834 + 2,158) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0017358 \text{ m/zod};
G_{2732} = (59.834 \cdot 1 + 2.158 \cdot 1) / 3600 = 0.01722 \ z/c;
M = 0.007429 + 0.006509 + 0.018391 + 0.0095743 + 0.0017358 = 0.043639 \, \text{m/zod};
G = \max\{0.0016378; 0.0043049; 0.0081089; 0.0126644; 0.01722\} = 0.01722 \ z/c.
Автомобиль бортовой ГАЗ-33021
M'^{T}_{301} = 0.384 \cdot 2 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 2.3376 \ \epsilon;
M''^{T}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \epsilon;
M^{T}_{301} = (2,3376 + 1,5696) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0021099 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,3376 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,0010853 \, \epsilon/c;
M'^{\Pi}_{30I} = 0.576 \cdot 6 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 5.0256 \ \epsilon;
M''^{\Pi}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \ \epsilon;
M^{\Pi}_{301} = (5,0256 + 1,5696) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0011871 \text{ m/zod};
\mathbf{G}^{\Pi}_{301} = (5,0256 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,001832 \, z/c;
M'^{X}_{301} = 0.576 \cdot 12 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 8.4816 c;
M''^{X}_{301} = 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 1.5696 \ \epsilon;
\mathbf{M}^{X}_{30I} = (8,4816 + 1,5696) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,0027138 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (8,4816 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,002792 \ z/c;
M'^{X-10..-15^{\circ}C}_{30I} = 0.576 \cdot 20 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 13.0896 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 c;
```

 $M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0$ 2;

 $M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;$ $M^{X}_{2704} = (0 + 0) \cdot 90 \cdot 7 \cdot 10^{-6} = 0 \ m/co\partial;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

72

```
M^{\text{X-15..-20}^{\circ}\text{C}}_{30I} = (17,6976 + 1,5696) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0002312 \text{ m/cod};
G_{301} = (17,6976 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,005352 \, e/c;
M = 0.0021099 + 0.0011871 + 0.0027138 + 0.0013193 + 0.0002312 = 0.0075614  m/20\partial;
G = \max\{0.0010853; 0.001832; 0.002792; 0.004072; 0.005352\} = 0.005352 \ c/c.
M^{\prime T}_{304} = 0.0624 \cdot 2 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.3798 \, \epsilon;
M''^{\mathrm{T}}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \varepsilon;
M^{\mathrm{T}}_{304} = (0.3798 + 0.255) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0003428 \, \text{m/zod};
G^{T}_{304} = (0.3798 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0001763 \ z/c;
M'^{\Pi}_{304} = 0.0936 \cdot 6 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.8166 \ \varepsilon;
M''^{\Pi}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \epsilon;
M^{\Pi}_{304} = (0.8166 + 0.255) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0001929 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (0.8166 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0002977 \, \epsilon/c;
M'^{X}_{304} = 0.0936 \cdot 12 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 1.3782 c;
M''^{X}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 z;
M^{X}_{304} = (1.3782 + 0.255) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.000441 \text{ m/zod};
G^{X}_{304} = (1,3782 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0004537 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.0936 \cdot 20 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.127 \text{ } z;
M''^{X-10..-15^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2,127+0,255) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0002144 \text{ m/cod};
G^{X-10..-15^{\circ}C}_{304} = (2,127 \cdot 1 + 0,255 \cdot 1) / 3600 = 0,0006617 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0936 \cdot 28 + 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 2.8758 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.321 \cdot 0.1 / 10 \cdot 60 + 0.0624 \cdot 1 = 0.255 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (2.8758 + 0.255) \cdot 4 \cdot 3 \cdot 10^{-6} = 0.0000376 \text{ m/zod};
G_{304} = (2.8758 \cdot 1 + 0.255 \cdot 1) / 3600 = 0.0008697 \ z/c;
M = 0.0003428 + 0.0001929 + 0.000441 + 0.0002144 + 0.0000376 = 0.0012286 \, \text{m/200};
G = \max\{0.0001763; 0.0002977; 0.0004537; 0.0006617; 0.0008697\} = 0.0008697 \ \epsilon/c.
M'^{T}_{328} = 0.06 \cdot 2 + 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.342 c;
M''^{\mathrm{T}}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 \ \varepsilon;
M^{T}_{328} = (0.342 + 0.222) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0003046 \text{ m/zod};
G^{T}_{328} = (0.342 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0001567 \ z/c;
M^{\prime \Pi}_{328} = 0.324 \cdot 6 + 0.369 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 2.2254 z;
M''^{\Pi}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\Pi}_{328} = (2,2254 + 0,222) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0004405 \ m/200;
G^{\Pi}_{328} = (2.2254 \cdot 1 + 0.222 \cdot 1) / 3600 = 0.0006798 \, e/c;
M'^{X}_{328} = 0.36 \cdot 12 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 4.626 z;
M''^{X}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{X}_{328} = (4,626 + 0,222) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,001309 \text{ m/zod};
\mathbf{G}^{X}_{328} = (4,626 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0013467 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.36 \cdot 20 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 7.506 \text{ } z;
M''^{X-10..-15^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (7,506+0,222) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0006955 \text{ m/sod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (7,506 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0021467 \ z/c;
M'^{\text{X-15..-20°C}}_{328} = 0.36 \cdot 28 + 0.41 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 10.386 \, \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.27 \cdot 0.1 / 10 \cdot 60 + 0.06 \cdot 1 = 0.222 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (10,386+0,222) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,0001273 \text{ m/zod};
G_{328} = (10,386 \cdot 1 + 0,222 \cdot 1) / 3600 = 0,0029467 \ z/c;
M = 0.0003046 + 0.0004405 + 0.001309 + 0.0006955 + 0.0001273 = 0.0028769 \, \text{m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{30l} = (13,0896 + 1,5696) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0013193 \text{ m/200};$ $\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{30l} = (13,0896 \cdot 1 + 1,5696 \cdot 1) / 3600 = 0,004072 \text{ z/c};$

 $M''^{X-15..-20^{\circ}C}_{30I} = 1,976 \cdot 0,1 / 10 \cdot 60 + 0,384 \cdot 1 = 1,5696 \, \epsilon;$

 $M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.576 \cdot 28 + 1.976 \cdot 0.1 / 10 \cdot 60 + 0.384 \cdot 1 = 17.6976 \, \epsilon;$

73

```
M'^{\Pi}_{330} = 0.108 \cdot 6 + 0.207 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.8692 z;
M''^{\Pi}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{\Pi}_{330} = (0.8692 + 0.211) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0001944 \, \text{m/zod};
G^{\Pi}_{330} = (0.8692 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0003001 \ c/c;
M'^{X}_{330} = 0.12 \cdot 12 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 1.675 \ \epsilon;
M''^{X}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{X_{330}} = (1,675 + 0.211) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0005092 \text{ m/zod};
G^{X}_{330} = (1,675 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0005239 \ z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.12 \cdot 20 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 2.635 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 z;
M^{X-10..-15^{\circ}C}_{330} = (2,635+0,211) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0002561 \text{ m/200};
G^{X-10..-15^{\circ}C}_{330} = (2,635 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0007906 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.12 \cdot 28 + 0.23 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 3.595 c;
M''^{X-15..-20^{\circ}C}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3.595 + 0.211) \cdot 4 \cdot 3 \cdot 10^{-6} = 0.0000457 \text{ m/200};
G_{330} = (3.595 \cdot 1 + 0.211 \cdot 1) / 3600 = 0.0010572 \ z/c;
M = 0.0003326 + 0.0001944 + 0.0005092 + 0.0002561 + 0.0000457 = 0.0013381 \,\text{m/zod};
G = \max\{0,0001711; 0,0003001; 0,0005239; 0,0007906; 0,0010572\} = 0,0010572 \ c/c.
M'^{\mathrm{T}}_{337} = 2.4 \cdot 2 + 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 7.974 \, z;
M''^{\mathrm{T}}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \varepsilon;
M^{T}_{337} = (7.974 + 3.174) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0060199 \text{ m/zod};
G^{T}_{337} = (7.974 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0030967 \ z/c;
M'^{\Pi}_{337} = 4.32 \cdot 6 + 1.413 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 29.1678 \, \epsilon;
M''^{\Pi}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 \ \epsilon;
M^{\Pi}_{337} = (29,1678 + 3,174) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0058215 \text{ m/zod};
\mathbf{G}^{\Pi}_{337} = (29,1678 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0089838 \, \epsilon/c;
M'^{X}_{337} = 4.8 \cdot 12 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 60.942 z;
M''^{X}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 z;
M^{X}_{337} = (60,942 + 3,174) \cdot 90 \cdot 3 \cdot 10^{-6} = 0,0173113 \text{ m/sod};
G^{X_{337}} = (60,942 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,01781 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 4.8 \cdot 20 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 99.342 z;
M''^{X-10..-15^{\circ}C}_{337} = 1,29 \cdot 0,1 / 10 \cdot 60 + 2,4 \cdot 1 = 3,174 c;
M^{X-10..-15^{\circ}C}_{337} = (99.342 + 3.174) \cdot 30 \cdot 3 \cdot 10^{-6} = 0.0092264 \text{ m/zod};
G^{X-10.-15^{\circ}C}_{337} = (99.342 \cdot 1 + 3.174 \cdot 1) / 3600 = 0.0284767 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 4.8 \cdot 28 + 1.57 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 137.742 \text{ z};
M''^{X-15..-20^{\circ}C}_{337} = 1.29 \cdot 0.1 / 10 \cdot 60 + 2.4 \cdot 1 = 3.174 z;
M^{X-15...20^{\circ}C}_{337} = (137.742 + 3.174) \cdot 4 \cdot 3 \cdot 10^{-6} = 0.001691 \text{ m/zod};
G_{337} = (137,742 \cdot 1 + 3,174 \cdot 1) / 3600 = 0,0391433 \ z/c;
M = 0.0060199 + 0.0058215 + 0.0173113 + 0.0092264 + 0.001691 = 0.0400702 \text{ m/zod};
G = \max\{0.0030967; 0.0089838; 0.01781; 0.0284767; 0.0391433\} = 0.0391433 \ z/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 3 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0, 1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $G = \max\{0.0001567; 0.0006798; 0.0013467; 0.0021467; 0.0029467\} = 0.0029467 \ \epsilon/c.$

 $M^{\prime T}_{330} = 0.097 \cdot 2 + 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.405 z;$

 $M^{T}_{330} = (0,405 + 0,211) \cdot 180 \cdot 3 \cdot 10^{-6} = 0,0003326 \text{ m/200};$ $G^{T}_{330} = (0,405 \cdot 1 + 0,211 \cdot 1) / 3600 = 0,0001711 \text{ z/c};$

 $M''^{T}_{330} = 0.19 \cdot 0.1 / 10 \cdot 60 + 0.097 \cdot 1 = 0.211 c;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

74

```
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 3 \cdot 10^{-6} = 0 \text{ m/200};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.1 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 3 \cdot 10^{-6} = 0 \text{ m/sod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \frac{2}{c}
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.3 \cdot 2 + 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 1.158 \, \varepsilon;
M''^{T}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{T}_{2732} = (1.158 + 0.558) \cdot 180 \cdot 3 \cdot 10^{-6} = 0.0009266 \text{ m/zod};
G^{T}_{2732} = (1,158 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0004767 \ z/c;
M^{\prime \Pi}_{2732} = 0.702 \cdot 6 + 0.459 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 4.7874 \, \epsilon;
M''^{\Pi}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\Pi}_{2732} = (4.7874 + 0.558) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.0009622 \text{ m/zod};
G^{\Pi}_{2732} = (4,7874 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0014848 \ z/c;
M'^{X}_{2732} = 0.78 \cdot 12 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 9.966 c
M''^{X}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 \ \epsilon;
M^{X}_{2732} = (9.966 + 0.558) \cdot 90 \cdot 3 \cdot 10^{-6} = 0.0028415 \text{ m/zod};
\mathbf{G}^{X}_{2732} = (9.966 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.0029233 \ \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.78 \cdot 20 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 16,206 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{X-10..-15^{\circ}C}_{2732} = (16,206+0,558) \cdot 30 \cdot 3 \cdot 10^{-6} = 0,0015088 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (16,206 \cdot 1 + 0,558 \cdot 1) / 3600 = 0,0046567 c/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{2732} = 0.78 \cdot 28 + 0.51 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 22,446 c;
M''^{X-15..-20^{\circ}C}_{2732} = 0.43 \cdot 0.1 / 10 \cdot 60 + 0.3 \cdot 1 = 0.558 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (22,446+0,558) \cdot 4 \cdot 3 \cdot 10^{-6} = 0,000276 \text{ m/zod};
G_{2732} = (22,446 \cdot 1 + 0.558 \cdot 1) / 3600 = 0.00639 \ egz;
M = 0.0009266 + 0.0009622 + 0.0028415 + 0.0015088 + 0.000276 = 0.0065151 \text{ m/zod};
G = \max\{0.0004767; 0.0014848; 0.0029233; 0.0046567; 0.00639\} = 0.00639 \ \epsilon/c.
Каток кулачковый ДУ-94
M^{\prime T}_{30I} = 0.232 \cdot 2 + 1.192 \cdot 0.1 / 5 \cdot 60 + 0.232 \cdot 1 = 2.1264 z;
M''^{\mathrm{T}}_{301} = 1{,}192 \cdot 0{,}1 / 5 \cdot 60 + 0{,}232 \cdot 1 = 1{,}6624 \, \varepsilon;
M^{T}_{30I} = (2.1264 + 1.6624) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0027279 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,1264 \cdot 1 + 1,6624 \cdot 1) / 3600 = 0,0010524 \, \epsilon/c;
M^{\prime \Pi}_{301} = 0.352 \cdot 6 + 1.192 \cdot 0.1 / 5 \cdot 60 + 0.232 \cdot 1 = 3.7744 c;
M''^{\Pi}_{301} = 1{,}192 \cdot 0{,}1 / 5 \cdot 60 + 0{,}232 \cdot 1 = 1{,}6624 \ \varepsilon;
M^{\Pi_{30I}} = (3.7744 + 1.6624) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.0013048 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (3,7744 \cdot 1 + 1,6624 \cdot 1) / 3600 = 0,0015102 \, \epsilon/c;
M'^{X}_{301} = 0.352 \cdot 12 + 1.192 \cdot 0.1 / 5 \cdot 60 + 0.232 \cdot 1 = 5.8864 z;
M''^{X}_{301} = 1{,}192 \cdot 0{,}1 / 5 \cdot 60 + 0{,}232 \cdot 1 = 1{,}6624 z;
M^{X}_{30I} = (5.8864 + 1.6624) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0027176 \text{ m/zod};
\mathbf{G}^{X}_{301} = (5.8864 \cdot 1 + 1.6624 \cdot 1) / 3600 = 0.0020969 \ \epsilon/c;
```

 $9035.1 - \Pi MOOC 3$

 $M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 3 \cdot 10^{-6} = 0 \text{ m/zod};$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

75

```
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (8,7024 + 1,6624) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0012438 \text{ m/zod};
\mathbf{G}^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (8,7024 \cdot 1 + 1,6624 \cdot 1) / 3600 = 0,0028791 \text{ z/c};
M'^{\text{X}-15..-20^{\circ}\text{C}}_{301} = 0.352 \cdot 28 + 1.192 \cdot 0.1 / 5 \cdot 60 + 0.232 \cdot 1 = 11.5184 \, \epsilon;
M''^{X-15..-20^{\circ}C}_{301} = 1,192 \cdot 0,1 / 5 \cdot 60 + 0,232 \cdot 1 = 1,6624 \varepsilon;
M^{X-15..-20^{\circ}C}_{301} = (11,5184 + 1,6624) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0002109 \ m/cod;
G_{301} = (11,5184 \cdot 1 + 1,6624 \cdot 1) / 3600 = 0,0036613 \ z/c;
M = 0.0027279 + 0.0013048 + 0.0027176 + 0.0012438 + 0.0002109 = 0.008205 \, \text{m/zod};
G = \max\{0.0010524; 0.0015102; 0.0020969; 0.0028791; 0.0036613\} = 0.0036613 \ z/c.
M'^{\mathrm{T}}_{304} = 0.0377 \cdot 2 + 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.34554 \, \varepsilon;
M''^{T}_{304} = 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.27014 \ \epsilon;
M^{T}_{304} = (0.34554 + 0.27014) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0004433 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.34554 \cdot 1 + 0.27014 \cdot 1) / 3600 = 0.000171 \ z/c;
M'^{\Pi}_{304} = 0.0572 \cdot 6 + 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.61334 \, \epsilon;
M''^{\Pi}_{304} = 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.27014 \, \epsilon;
M^{\Pi}_{304} = (0.61334 + 0.27014) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.000212 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.61334 \cdot 1 + 0.27014 \cdot 1) / 3600 = 0.0002454 \, \epsilon/c;
M'^{X}_{304} = 0.0572 \cdot 12 + 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.95654 z;
M''^{X}_{304} = 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.27014 z;
M^{X}_{304} = (0.95654 + 0.27014) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0004416 \, \text{m/zod};
\mathbf{G}^{X}_{304} = (0.95654 \cdot 1 + 0.27014 \cdot 1) / 3600 = 0.0003407 \ z/c;
M'^{X-10..-15^{\circ}C}_{304} = 0.0572 \cdot 20 + 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 1.41414 z;
M''^{X-10..-15^{\circ}C}_{304} = 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.27014 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (1,41414 + 0,27014) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0002021 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{304} = (1,41414 \cdot 1 + 0,27014 \cdot 1) / 3600 = 0,0004679 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0572 \cdot 28 + 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 1.87174 \, \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.1937 \cdot 0.1 / 5 \cdot 60 + 0.0377 \cdot 1 = 0.27014 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{304} = (1,87174 + 0,27014) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0000343 \text{ m/200};
G_{304} = (1,87174 \cdot 1 + 0,27014 \cdot 1) / 3600 = 0,000595 \ z/c;
M = 0.0004433 + 0.000212 + 0.0004416 + 0.0002021 + 0.0000343 = 0.0013333  m/200;
G = \max\{0.000171; 0.0002454; 0.0003407; 0.0004679; 0.000595\} = 0.000595 \ z/c.
M'^{\mathrm{T}}_{328} = 0.04 \cdot 2 + 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.324 \, \epsilon;
M''^{T}_{328} = 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.244 c;
M^{T}_{328} = (0.324 + 0.244) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.000409 \text{ m/zod};
G^{T}_{328} = (0.324 \cdot 1 + 0.244 \cdot 1) / 3600 = 0.0001578 \ z/c;
M'^{\Pi}_{328} = 0.216 \cdot 6 + 0.225 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 1.606 c;
M''^{\Pi}_{328} = 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.244 \ \epsilon;
M^{\Pi}_{328} = (1,606 + 0,244) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,000444 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (1,606 \cdot 1 + 0,244 \cdot 1) / 3600 = 0,0005139 \, \epsilon/c;
M'^{X}_{328} = 0.24 \cdot 12 + 0.25 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 3.22 z;
M''^{X}_{328} = 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.244 \ \epsilon;
M^{X}_{328} = (3.22 + 0.244) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.001247 \text{ m/zod};
G^{X}_{328} = (3,22 \cdot 1 + 0,244 \cdot 1) / 3600 = 0,0009622 \, c/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{328} = 0.24 \cdot 20 + 0.25 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 5.14 \text{ z};
M''^{X-10..-15^{\circ}C}_{328} = 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.244 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (5.14 + 0.244) \cdot 30 \cdot 4 \cdot 10^{-6} = 0.0006461 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (5,14 \cdot 1 + 0,244 \cdot 1) / 3600 = 0,0014956  z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 0.24 \cdot 28 + 0.25 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 7.06 \ \varepsilon;
M^{"X-15..-20^{\circ}C}_{328} = 0.17 \cdot 0.1 / 5 \cdot 60 + 0.04 \cdot 1 = 0.244 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{328} = (7,06+0,244) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0001169 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\prime X-10...-15^{\circ}C}_{30I} = 0.352 \cdot 20 + 1.192 \cdot 0.1 / 5 \cdot 60 + 0.232 \cdot 1 = 8.7024 c;$

 $M''^{X-10..-15^{\circ}C}_{30I} = 1{,}192 \cdot 0{,}1 / 5 \cdot 60 + 0{,}232 \cdot 1 = 1{,}6624 z;$

76

```
M^{T}_{330} = (0.318 + 0.202) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0003744 \text{ m/zod};
G^{T}_{330} = (0.318 \cdot 1 + 0.202 \cdot 1) / 3600 = 0.0001444 \, z/c;
M'^{\Pi}_{330} = 0.0648 \cdot 6 + 0.135 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.6088 \, \epsilon;
M^{\prime\prime}^{\Pi}_{330} = 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.202 \ \varepsilon;
M^{\Pi}_{330} = (0,6088 + 0,202) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0001946 \text{ m/200};
G^{\Pi}_{330} = (0.6088 \cdot 1 + 0.202 \cdot 1) / 3600 = 0.0002252 \, c/c;
M'^{X}_{330} = 0.072 \cdot 12 + 0.15 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 1.102 c;
M''^{X}_{330} = 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.202 \ \epsilon;
M^{X_{330}} = (1.102 + 0.202) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0004694 \text{ m/zod};
G^{X}_{330} = (1,102 \cdot 1 + 0,202 \cdot 1) / 3600 = 0,0003622 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.072 \cdot 20 + 0.15 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 1.678 z;
M''^{X-10..-15^{\circ}C}_{330} = 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.202 \ \epsilon;
M^{X-10..-15^{\circ}C}_{330} = (1,678+0,202) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0002256 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (1.678 \cdot 1 + 0.202 \cdot 1) / 3600 = 0.0005222 \ z/c;
M'^{\text{X-15..-20°C}}_{330} = 0.072 \cdot 28 + 0.15 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 2.254 \text{ z};
M^{"X-15..-20^{\circ}C}_{330} = 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.202 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (2,254+0,202) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0000393 \text{ m/zod};
G_{330} = (2.254 \cdot 1 + 0.202 \cdot 1) / 3600 = 0.0006822 \ z/c;
M = 0.0003744 + 0.0001946 + 0.0004694 + 0.0002256 + 0.0000393 = 0.0013033 \, \text{m/200};
G = \max\{0,0001444; 0,0002252; 0,0003622; 0,0005222; 0,0006822\} = 0,0006822 \ \epsilon/c.
M'^{T}_{337} = 1.4 \cdot 2 + 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 5.164 c;
M''^{\mathrm{T}}_{337} = 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 2.364 \ \varepsilon;
M^{T}_{337} = (5,164 + 2,364) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0054202 \text{ m/zod};
G^{T}_{337} = (5,164 \cdot 1 + 2,364 \cdot 1) / 3600 = 0,0020911 \ z/c;
M^{\Pi}_{337} = 2.52 \cdot 6 + 0.846 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 17.5752 \ \epsilon;
M''^{\Pi}_{337} = 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 2.364 c;
M^{\Pi}_{337} = (17,5752 + 2,364) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0047854 \, \text{m/zod};
G^{\Pi}_{337} = (17,5752 \cdot 1 + 2,364 \cdot 1) / 3600 = 0,0055387 \ c/c;
M'^{X}_{337} = 2.8 \cdot 12 + 0.94 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 36.168 \, \epsilon;
M''^{X}_{337} = 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 2.364 c;
M^{X}_{337} = (36,168 + 2,364) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0138715 \text{ m/zod};
G^{X}_{337} = (36,168 \cdot 1 + 2,364 \cdot 1) / 3600 = 0,0107033 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{337} = 2.8 \cdot 20 + 0.94 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 58.568 \text{ } \epsilon;
M''^{X-10..-15^{\circ}C}_{337} = 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 2.364 \epsilon;
M^{X-10..-15^{\circ}C}_{337} = (58,568 + 2,364) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0073118 \, \text{m/zod};
G^{X-10..-15^{\circ}C}_{337} = (58,568 \cdot 1 + 2,364 \cdot 1) / 3600 = 0,0169256 \, c/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 2.8 \cdot 28 + 0.94 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 80.968 \text{ } z;
M''^{X-15..-20^{\circ}C}_{337} = 0.77 \cdot 0.1 / 5 \cdot 60 + 1.44 \cdot 1 = 2.364 z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (80.968 + 2.364) \cdot 4 \cdot 4 \cdot 10^{-6} = 0.0013333 \text{ m/zod};
G_{337} = (80,968 \cdot 1 + 2,364 \cdot 1) / 3600 = 0,0231478 \ z/c;
M = 0.0054202 + 0.0047854 + 0.0138715 + 0.0073118 + 0.0013333 = 0.0327222  m/200;
G = \max\{0.0020911; 0.0055387; 0.0107033; 0.0169256; 0.0231478\} = 0.0231478 \ c/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 c;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 4 \cdot 10^{-6} = 0 \text{ m/sod};
G^{T}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
```

 $9035.1 - \Pi MOOC 3$

 $G_{328} = (7.06 \cdot 1 + 0.244 \cdot 1) / 3600 = 0.0020289 \ z/c;$

 $M''^{\mathrm{T}}_{330} = 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.202 \ \varepsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\prime T}_{330} = 0.058 \cdot 2 + 0.12 \cdot 0.1 / 5 \cdot 60 + 0.058 \cdot 1 = 0.318 z;$

M = 0.000409 + 0.000444 + 0.001247 + 0.0006461 + 0.0001169 = 0.0028629 $m/zo\partial;$ $G = \max\{0.0001578; 0.0005139; 0.0009622; 0.0014956; 0.0020289\} = 0.0020289$ z/c.

77

```
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/sod};
                      G = \max\{\underline{0}; 0; 0; 0; 0\} = 0 \ z/c.
                      M'^{\mathrm{T}}_{2732} = 0.18 \cdot 2 + 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.852 \, \epsilon;
                      M''^{T}_{2732} = 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.492 z;
                      M^{\mathrm{T}}_{2732} = (0.852 + 0.492) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0009677 \, \text{m/zod};
                      G^{T}_{2732} = (0.852 \cdot 1 + 0.492 \cdot 1) / 3600 = 0.0003733 \ z/c;
                      M'^{\Pi}_{2732} = 0.423 \cdot 6 + 0.279 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 3.0528 \, \epsilon;
                      M''^{\Pi}_{2732} = 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.492 \ \epsilon;
                      M^{\Pi}_{2732} = (3,0528 + 0,492) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0008508 \, \text{m/zod};
                      \mathbf{G}^{\Pi}_{2732} = (3.0528 \cdot 1 + 0.492 \cdot 1) / 3600 = 0.0009847 \ \epsilon/c;
                      M'^{X}_{2732} = 0.47 \cdot 12 + 0.31 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 6.192 c;
                      M''^{X}_{2732} = 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.492 z;
                      M^{X}_{2732} = (6,192 + 0,492) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0024062 \text{ m/zod};
                      G^{X}_{2732} = (6.192 \cdot 1 + 0.492 \cdot 1) / 3600 = 0.0018567 \ z/c;
Согласовано
                      M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 0,47 \cdot 20 + 0,31 \cdot 0,1 / 5 \cdot 60 + 0,18 \cdot 1 = 9,952 \ \epsilon;
                      M''^{X-10..-15^{\circ}C}_{2732} = 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.492 c;
                      M^{\text{X-}10..-15^{\circ}\text{C}}_{2732} = (9,952 + 0,492) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0012533 \text{ m/zod};
                      G^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (9,952 \cdot 1 + 0,492 \cdot 1) / 3600 = 0,0029011 \ c/c;
                      M'^{X-15...20^{\circ}C}_{2732} = 0,47 \cdot 28 + 0,31 \cdot 0,1 / 5 \cdot 60 + 0,18 \cdot 1 = 13,712 \ \epsilon;
                      M''^{X-15..-20^{\circ}C}_{2732} = 0.26 \cdot 0.1 / 5 \cdot 60 + 0.18 \cdot 1 = 0.492 z;
                      M^{\text{X-15..-20}^{\circ}\text{C}}_{2732} = (13,712 + 0,492) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0002273 \text{ m/sod};
                      G_{2732} = (13,712 \cdot 1 + 0,492 \cdot 1) / 3600 = 0,0039456 \ \epsilon/c;
                      M = 0.0009677 + 0.0008508 + 0.0024062 + 0.0012533 + 0.0002273 = 0.0057052 \, \text{m/zod};
  읟
                       G = \max\{0,0003733; 0,0009847; 0,0018567; 0,0029011; 0,0039456\} = 0,0039456  z/c.
  инв.
```

1.1 1.1 Внутренний проезд (ИЗА №6503)

загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2005.

атмосферу автотранспортных предприятий (расчетным методом). М, 1998.

перемещающихся по территории предприятия.

методическими документами:

Изм. Кол.уч. Лист № док. Подпись Дата

Подпись и дата

Инв. № подл

Источниками выделений загрязняющих веществ являются двигатели автомобилей,

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими

- Методическое пособие по расчету, нормированию и контролю выбросов

– Методика проведения инвентаризации выбросов загрязняющих веществ в

 $9035.1 - \Pi MOOC 3$

 $M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;$ $M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 4 \cdot 10^{-6} = 0 \ m/200;$ $G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ \epsilon/c;$

 $M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;$ $M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 4 \cdot 10^{-6} = 0 \ m/20\partial;$

 $G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;$

 $M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0, 1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$

 $M''^{\Pi}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$ $M^{\Pi}_{2704} = (0 + 0) \cdot 60 \cdot 4 \cdot 10^{-6} = 0 \text{ m/zod};$ $G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;$

 $M''^{X}_{2704} = 0 \cdot 0.1 / 5 \cdot 60 + 0 \cdot 1 = 0 z;$ $M^{X}_{2704} = (0 + 0) \cdot 90 \cdot 4 \cdot 10^{-6} = 0 \text{ m/zod};$ $G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;$

– Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). M, 1999.

Количественная и качественная характеристика загрязняющих выделяющихся в атмосферу от автотранспортных средств, приведена в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,0002089	0,000275
304	Азот (II) оксид (Азота оксид)	0,0000339	0,000045
328	Углерод (Сажа)	0,0000080	0,000011
330	Сера диоксид (Ангидрид сернистый)	0,0000462	0,000061
337	Углерод оксид	0,0004017	0,000528
2732	Керосин	0,0000536	0,000070

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Количество авт	Одно	
Наименование	T	сродное в	максимал	врем
паименование	Тип автотранспортного средства	среднее в	ьное за 1	енно
		течение суток	час	СТЬ
Техника, привозящая	Грузовой, г/п свыше 16 т, дизель	1	1	+
стоительные				
материалы				

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы і-го вещества при движении автомобилей по расчётному внутреннему проезду $M_{\Pi P \ ik}$ рассчитывается по формуле (1.1.1):

$$M_{\Pi P i} = \sum_{k=1}^{K} m_{L i k} \cdot L \cdot N_k \cdot D_P \cdot 10^{-6}, \text{т/год}$$
 (1.1.1)

где m_{Lik} – пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час г/км;

L - протяженность расчётного внутреннего проезда, κM ;

 N_k - среднее количество автомобилей k-й группы, проезжающих по расчётному проезду в течении суток;

 D_P - количество расчётных дней.

Согласовано

Максимально разовый выброс *i*-го вещества
$$G_i$$
 рассчитывается по формуле (1.1.2):
$$G_i = \sum_{k=1}^k m_{Lik} \cdot L \cdot N'_k / 3600, \, \Gamma/c \qquad (1.1.2)$$

где N'_k – количество автомобилей k-й группы, проезжающих по расчётному проезду за 1 час, характеризующийся максимальной интенсивностью проезда автомобилей.

	Í	Удо	ельны		осы з	агрязняющих веществ при пробеге по расчётному проезд	у
Таблица 1.1.3 - Удельные выбросы загрязняющих веществ							
						9035.1 – ПМООС 3	Лист
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата		78

Тип	Загрязняющее вещество	Пробег <i>,</i> г/км
Грузовой, г/п свыше 16 т, дизель	Азота диоксид (Азот (IV)	3,12
	оксид)	
	Азот (II) оксид (Азота	0,507
	оксид)	
	Углерод (Сажа)	0,3
	Сера диоксид (Ангидрид	0,69
	сернистый)	
	Углерод оксид	6
	Керосин	0,8

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Годовое выделение загрязняющих веществ M, m/год:

Техника, привозящая стоительные материалы

 $M_{301} = 3,12 \cdot 0,241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0,0002745;$

 $M_{304} = 0.507 \cdot 0.241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0.0000446;$

 $M_{328} = 0.3 \cdot 0.241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0.0000264;$

 $M_{330} = 0.69 \cdot 0.241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0.0000607;$

 $M_{337} = 6 \cdot 0.241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0.0005278;$

 $M_{2732} = 0.8 \cdot 0.241 \cdot 1 \cdot 365 \cdot 10^{-6} = 0.0000704.$

Максимально разовое выделение загрязняющих веществ G, z/c:

Техника, привозящая стоительные материалы

 $G_{301} = 3,12 \cdot 0,241 \cdot 1 / 3600 = 0,0002089;$

 $G_{304} = 0.507 \cdot 0.241 \cdot 1 / 3600 = 0.0000339;$

 $G_{328} = 0.3 \cdot 0.241 \cdot 1 / 3600 = 0.0000201;$

 $G_{330} = 0.69 \cdot 0.241 \cdot 1 / 3600 = 0.0000462;$

 $G_{337} = 6 \cdot 0.241 \cdot 1 / 3600 = 0.0004017;$

Согласовано

읟

Подпись и дата

 $G_{2732} = 0.8 \cdot 0.241 \cdot 1 / 3600 = 0.0000536.$

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

Расчет выбросов загрязняющих веществ в период строительства 6504. Расчет валовых и максимально разовых выбросов при проведении сварочных работ

Расчет валовых и максимально разовых выбросов при проведении сварочных работ выполнен в соответствии с:

Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей). СПб., 2015

Количество выделяющихся загрязняющих веществ при сварке зависит от марки электрода и других параметров сварочного производства. Марка применяемых электродов – УОНИИ 13/65.

Расчет количества загрязняющих веществ проводится по удельным показателям, приведенным к расходу сварочных материалов.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – $\Pi MOOC 3$

Лист

79

Результаты расчётов:

Код	Название вещества	Без учёта газоочистки		Газоочистка	С учётом газоочистки	
		г/с	т/год	%	г/с	т/год
0123	Железа оксид	0,0093542	0,067350	0.00	0,0093542	0,067350
0143	Марганец и его соединения	0,0029375	0,021150	0.00	0,0029375	0,021150
2908	Пыль неорганическая: 70-20% SiO2	0,0016667	0,012000	0.00	0,0016667	0,012000
0342	Фториды газообразные	0,0024375	0,017550	0.00	0,0024375	0,017550
0344	Фториды плохо растворимые	0,0016667	0,012000	0.00	0,0016667	0,012000

Расчётные формулы:

Мвал. =Yi*M/1000000 [т/год]

Ммакс.=Үі*М/Т/3600 [г/с]

Исходные данные.

Согласовано

Взам. инв. №

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка материала: УОНИ-13/65

Удельные выделения загрязняющих веществ:

Код	Название вещества	Yi [г/кг]				
	0123 Железа оксид		4.4900000			
	0143 Марганец и его соединения		1.4100000			
	2908 Пыль неорганическая: 70-20% SiO2		0.8000000			
	0342 Фториды газообразные		1.1700000			
	0344 Фториды плохо растворимые		0.8000000			
Время р	Время работы сварочного поста за год (Т): 2000 [час]					
Масса 1	Масса израсходованного материала (М): 15000 [кг]					

						Г
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	

9035.1 – ПМООС 3

Лист

80

6507. Расчет выбросов от лакокрасочных работ

Расчет валовых и максимально разовых выбросов загрязняющих веществ, выделяющихся при лакокрасочных работах выполнен по "Методике расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (на основе удельных показателей)", СПб, 2015г.

Согласно п.4.3.1. Методики максимально разовые выбросы взвешенных веществ при окрасочных работах определяются по формуле:

$$M^{a}_{O} = P_{0} \times \delta_{a} \times (100 - f_{p}) \times \eta \times (1 - \eta_{1}) \times K_{0} / (1000 \times 3600), \Gamma/c$$

где:

 ${\bf P_0}$ - масса ЛКМ, расходуемой на выполнение окрасочных работ, кг/час

 δ_a - доля ЛКМ, потерянного в виде аэрозоля,%, принимается по табл. П2 Методики

 ${f f_p}$ - доля летучей части ЛКМ, %масс, принимается по табл. П1.

η - эффективность местных отсосов, в долях единицы;

η1 - степень очистки і-го загрязняющего вещества в установке очистки газа, в долях единицы

 K_0 - коэффициент оседания твердых частиц при известной длине воздуховодов, согласно табл. 4.1. Методики, $K_0 = 0.65$

Согласно п.4.3.2. максимально разовый выброс летучих веществ при окраске определяется по формуле:

$$M_{O} = P_{0} \times \delta_{p}' \times f_{p} \times (1-\eta) \times (1-\eta_{1}) \times \delta_{i} / (1000 \times 3600), \Gamma/c$$

при сушке:

$$M^{a}{}_{c} = P_{c} \times \delta_{p} " \times f_{p} \times \eta \times (1 - \eta_{1}) \times \delta_{i} / (1000 \times 3600), \ \Gamma/c$$

где P_c - масса покрытия ЛКМ, высушиваемого за 1 час, кг/час

 ${\bf \delta_{p}}^{'}$ - пары растворителя, выделившегося при окраске, % (табл.П.2 Методики)

 δ_p " - пары растворителя, выделившегося при сушке.

 δ_{i} - содержание i-го компонента в летучей части ЛКМ,%

Расчет валовых выбросов проводится по формулам:

взвешенные вещества при окрасочных работах:

$$M_0^{\Gamma} = M^a_O \times T \times 3600 \times 10^{-6}$$
, т/год

где Т - общая продолжительность операций нанесения ЛКМ за год, час летучие вещества при окраске:

$$M_0^{\Gamma} = M_0 \times T \times 3600 \times 10^{-6}$$
, т/год

при сушке:

Согласовано

읟

Взам. инв.

Подпись и дата

$$M_c^{\Gamma} = M_c \times T_c \times 3600 \times 10^{-6}$$
, T/ Γ 0Д

Исходные данные для расчета:

Применяемые ЛКМ: эмаль ПФ-115 30000 кг/год.

Кол-во часов работы в день - 8 час.

Способ окраски: пневматический

пары растворителя при окраске $\delta_{p'}$ - 25%

пары растворителя при сушке δ_p " - 75%

Вид ЛКМ	Доля летучей	Наименование ЗВ	Содержание компонента в
	части		летучей части,%
	(растворителя), %		

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

Эмаль ПФ-	45	Ксилол	50
115	45	Уайт-спирит	50

При нанесении эмали ПФ-115:

Уайт-спирит (2752) при окраске:

 $M_o = 0.893 \times 25 \times 45 \times 50/(1000 \times 3600) = 0.01395$ г/с $M_o^{\Gamma} = 0.01395 \times 700 \times 3600 \times 10^{-6} = 0.035$ т/год

Уайт-спирит (2752) при сушке:

 $M_o = 0.893 \times 75 \times 45 \times 50/(1000 \times 3600) = 0.041859 \ \Gamma/c$ $M_o^{\Gamma} = 0.041859 \times 2000 \times 3600 \times 10^{-6} = 0.30138 \ T/год$

Ксилол (616) при окраске:

 $\overline{M_o} = 0.893 \times 25 \times 45 \times 50/(1000 \times 3600) = 0.01395 \ {\ r/c} \ M_o{}^{\Gamma} = 0.01395 \ {\ x/rod}$

Ксилол (616) при сушке:

 $M_o = 0.893 \times 75 \times 45 \times 50/(1000 \times 3600) = 0.041859 \ r/c$ $M_o{}^r = 0.041859 \times 2000 \times 3600 \times 10^{-6} = 0.30138 \ r/r$ од

Результаты расчетов представлены в таблице 2.2.

Табл.2.2

Наименование	Код ЗВ	Выброс ЗВ пр	ри окраске	Выброс 3В при сушке		
3B		Максимально разовый выброс, г/с	Валовый выброс, т/год	Максимально разовый выброс, г/с	Валовый выброс, т/год	
Ксилол	616	0,01395	0,035	0,041859	0,30138	
Уайт-спирит	2752	0,01395	0,035	0,041859	0,30138	

Наименование цеха: Трансформатор для прогрева бетона

Источник: №6505

Расчетные формулы:

G = 0.01 т/год

Согласовано

읟

М=Мэ+Мд

M = 0.0009513 + 0.0003375 = 0.0012888 r/cek

Расчет выбросов при эксплуатации трансформаторных подстанций

 $M_3=G*10(6)/(T*3600)$

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Лист

82

 $M_9 = 0.01*1000*1000 /(2920*3600) = 0.0009513 г/сек$

Расчет выбросов при доливе масла

 $M_{\text{Д}} = C_1 * K_p^{\text{max}*V_q^{\text{max}}/3600}$

где, С1 - концентрация паров нефтепродукта в резервуаре, г/м3, принимается по приложению 12 ("Методических указаний по определению выбросов загрязняющих веществ в атмосферу от резервуаров". Новополоцк, 1997 год).

 \mathbf{K}_{p}^{max} - опытный коэффициент, принимается по приложению 8 ("Методических указаний по определению выбросов загрязняющих веществ в атмосферу от резервуаров". Новополоцк, 1997 год).

 $M_{\text{A}} = 0.324*0.1*150*0.25 /3600 = 0.0003375 \text{ r/cek}$

Результаты расчётов:

Согласовано

읟

Код	Название вещества	Количество ЗВ			
	,	г/с	т/год		
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.)	0,0012888	0,010000		

1.1 1.1 Стоянка для сотрудников и автобусов (ИЗА №6506)

Источниками выделений загрязняющих веществ являются двигатели автомобилей в период прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2005.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,0064848	0,006625
304	Азот (II) оксид (Азота оксид)	0,0010538	0,001077
328	Углерод (Сажа)	0,0001183	0,000097
330	Сера диоксид (Ангидрид сернистый)	0,0010552	0,001400
337	Углерод оксид	0,0930903	0,171375

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Лист

__

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
415	Углеводороды предельные С1-С5	0,0003806	0,003557
2704	Бензин (нефтяной, малосернистый)	0,0053486	0,008839
2732	Керосин	0,0057681	0,005011

Расчет выполнен для автостоянки открытого типа, не оборудованной средствами подогрева. Пробег автотранспорта при въезде составляет 0.05 км, при выезде -0.05 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -1 мин, при возврате на неё -1 мин. Количество дней для расчётного периода: теплого -180, переходного -60, холодного с температурой от -5° С до -10° С -90, холодного с температурой от -15° С до -20° С -4.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

	Тип автотранспортного	М	аксимальное к автомобил	гво	Экок	Одно	
Наименование	средства		выезд/въезд	выезд	въезд	онтр	врем
	средетва	всего	в течение	за 1	за 1	ОЛЬ	СТЬ
			суток	час	час		CIB
Зарубежные	Легковой, объем 1,8-3,5л,	20	17	2	1	-	+
	инжект., бензин						
Отечественные	Легковой, объем 1,2-1,8л,	20	17	2	1	-	+
	инжект., газ						
Автобусы	Автобус, большой,	2	2	1	1	-	+
зарубежные	дизель						
Автобусы	Автобус, особо малый,	2	2	1	1	_	+
отечественные	карбюр., бензин						

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы *i*-го вещества одним автомобилем k-й группы в день при выезде с территории или помещения стоянки M_{lik} и возврате M_{2ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M}_{lik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{Lik} \cdot \mathbf{L}_{l} + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XXl}, z \tag{1.1.1}$$

$$\mathbf{M}_{2ik} = \mathbf{m}_{Lik} \cdot \mathbf{L}_2 + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XX2}, z \tag{1.1.2}$$

где $m_{\Pi P \ ik}$ — удельный выброс i-го вещества при прогреве двигателя автомобиля k-й группы, 2/mun;

 $m_{L\ ik}$ - пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью $10\text{-}20\ \text{км/час},\ z/\kappa m;$

 $m_{XX\ ik}$ - удельный выброс **i**-го вещества при работе двигателя автомобиля **k**-й группы на холостом ходу, ε/muh ;

 $t_{\Pi P}$ - время прогрева двигателя, *мин*;

 L_1, L_2 - пробег автомобиля по территории стоянки, κM ;

 $t_{XX\ I}, t_{XX\ 2}$ - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё, *мин*.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями снижаются, поэтому должны пересчитываться по формулам (1.1.3 и 1.1.4):

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

읟

Взам. инв.

Подпись и дата

$$\mathbf{m'}_{\Pi P ik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{K}_{i}, 2/MUH$$
 (1.1.3)

$$\mathbf{m''}_{XX\,ik} = \mathbf{m}_{XX\,ik} \cdot \mathbf{K}_i, \, \mathcal{E}/\mathbf{M}\mathbf{U}\mathbf{H}$$
 (1.1.4)

где K_i — коэффициент, учитывающий снижение выброса i-го загрязняющего вещества при проведении экологического контроля.

Валовый выброс i-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле (1.1.5):

$$\mathbf{M}^{i}_{j} = \sum_{k=1}^{k} \alpha_{e} (\mathbf{M}_{1ik} + \mathbf{M}_{2ik}) \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, m/200$$
 (1.1.5)

где α_{θ} - коэффициент выпуска (выезда);

 N_k — количество автомобилей k-й группы на территории или в помещении стоянки за расчетный период;

 D_P - – количество дней работы в расчетном периоде (холодном, теплом, переходном);

j – период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ учитывается только для выезжающих автомобилей, хранящихся на открытых и закрытых не отапливаемых стоянках.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.6):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathrm{T}}_{i} + \mathbf{M}^{\mathrm{\Pi}}_{i} + \mathbf{M}^{\mathrm{X}}_{i}, \, m/200$$
 (1.1.6)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.7):

$$G_{i} = \sum_{k=1}^{\hat{k}} (M_{1ik} \cdot N'_{k} + M_{2ik} \cdot N''_{k}) / 3600, \varepsilon/ce\kappa$$
 (1.1.7)

где N'_k , N''_k – количество автомобилей k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) автомобилей.

Из полученных значений G_i выбирается максимальное с учетом одновременности движения автомобилей разных групп.

Удельные выбросы загрязняющих веществ при прогреве двигателей, пробеговые, на холостом ходу, коэффициент снижения выбросов при проведении экологического контроля K_i , а так же коэффициент изменения выбросов при движении по пандусу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

					Прогрев, г/мин			Пробег, г/км			
Тип	Загрязняющее ве	ULOCTRO							той	контр	
I VIII	загрязняющее ве	щество	Т	П	Χ	Т	П	Χ	ход,	оль,	
									г/мин	Ki	
Легко	Легковой, объем 1,8-3,5л, инжект., бензин										
	Азота диоксид (Азот (I	V) оксид)	0,024	0,032	0,032	0,192	0,192	0,192	0,024	1	
	Азот (II) оксид (Азота оксид)			0,005	0,005	0,031	0,031	0,031	0,003	1	
			9	2	2	2	2	2	9		
	Сера диоксид	(Ангидрид	0,011	0,011	0,013	0,057	0,063	0,071	0,01	0,95	
	сернистый)			7			9				
	Углерод оксид		2,9	5,13	5,7	9,3	10,53	11,7	1,9	0,8	
	Бензин	(нефтяной,	0,18	0,243	0,27	1,4	1,89	2,1	0,15	0,9	
	малосернистый)										

Изм. Кол.уч. Лист № док. Подпись Дата

Согласовано

읟

9035.1 – ПМООС 3

Лист

Тип Загрязняющее вещество Т П Х Т П Х Т П Х Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д			Про	грев, г/	′мин	Пр	обег, г/	′ĸм	Холос	Эко-
Легковой, объем 1,2-1,8л, инжект., газ Азота диоксид (Азота оксид) О,016 О,024 О,024 О,136 О,136 О,136 О,016 1	Тип	Загразнающее вещество							той	контр
Легковой, объем 1,2-1,8л, инжект., газ Азота диоксид (Азот (IV) оксид) 0,016 0,024 0,024 0,136 0,136 0,136 0,016 1 Азот (II) оксид (Азота оксид) 0,002 0,003 0,003 0,022 0,022 0,002 0,002 1 Сера диоксид (Ангидрид 0,009 0,009 0,01 0,049 0,054 0,061 0,008 0,95 Сера диоксид (Ангидрид 0,009 0,009 0,01 0,049 0,054 0,061 0,008 0,95 Углерод оксид 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Углеводороды предельные С1-С5 0,14 0,189 0,21 1 1,35 1,5 0,11 0,9 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,442 0,081 1 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 Сера диоксид (Азота оксид) 0,024 0,042 0,442 0,442 0,944 0,94 Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, сосбо малый, карбюр., бензин Азота диоксид (Азота оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 Р Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сера диоксид (Ангидрид 0,012 0,014 0,08 0,09 0,035 0,08	1 7111	загризниющее вещеетво	Т	П	Х	Т	П	Х	ход,	оль,
Азота диоксид (Азот (IV) оксид) 0,016 0,024 0,024 0,136 0,136 0,136 0,016 1 Азот (II) оксид (Азота оксид) 0,002 0,003 0,003 0,022 0,022 0,002 0,002 1 Сера диоксид (Ангидрид 0,009 0,009 0,01 0,049 0,054 0,061 0,008 0,95 сернистый) Углерод оксид 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Углеводороды предельные С1-С5 0,14 0,189 0,21 1 1,35 1,5 0,11 0,9 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 7 2 2 9 9 1 1 1 1,35 1,5 0,11 0,9 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,47 0,42 0,442 0,081 1 7 2 2 2 9 9 1 1 1 1,45 1 1,45 1 1 1,45 1 1 1,45 1 1 1,45 1 1 1,45 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1 1,45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									г/мин	Ki
Азот (II) оксид (Азота оксид) 0,002 0,003 0,003 0,002 0,002 0,002 0,002 1 1 1 6 0 0 0 0,009 0,01 0,049 0,054 0,061 0,008 0,95 0 0,01 0,049 0,054 0,061 0,008 0,95 0 0,01 0,049 0,054 0,061 0,008 0,95 0 0,01 0,049 0,054 0,061 0,008 0,95 0 0,01 0,049 0,054 0,061 0,008 0,95 0 0,01 0,049 0,054 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,061 0,008 0,95 0 0,01 0,080 0,01 0,080 0,01 0,080 0,01 0,080 0,041 0,042 0,043 0,095 0,095 0,095 0,095 0,093 0,091 0,095 0,095 0,093 0,093 0,094 0,	Легко	рвой, объем 1,2-1,8л, инжект., газ			_					
Сера диоксид сернистый) (Ангидрид сернистый) 0,009 0,009 0,01 0,049 0,054 0,061 0,008 0,95 Углерод оксид Углеводороды предельные С1-С5 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,442 0,081 1 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Азота оксид) 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин 4,5 0,032 0,032 0,24 0,24 0,24 0,024 0,024 1 Азот		Азота диоксид (Азот (IV) оксид)	0,016	0,024	0,024	0,136	0,136	0,136	0,016	1
Сера диоксид (Ангидрид 0,009 0,009 0,01 0,049 0,054 0,061 0,008 0,95 Углерод оксид 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,135 0,442 0,442 0,081 1 Углерод (Сажа) 0,002 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 Автобус, особо малый, карбюр., бензин 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин Азот (II) оксид (Азота оксид) 0,024 0,032 0,032 0,024 0,24 0,24 0,0		Азот (II) оксид (Азота оксид)	0,002	0,003	0,003	0,022	0,022	0,022	0,002	1
сернистый) 9 9 Углерод оксид 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Углеводороды предельные С1-С5 0,14 0,189 0,21 1 1,35 1,5 0,11 0,9 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,081 1 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Ангидрид О,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 Керосин 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Автобус, особо малый, карбюр., бензин 4,5 7,000 0,002 0,024 0,24 0,24 0,024 0,024 1 Азот (II) оксид (Азот (IV) оксид)<			6	9	9	1	1	1	6	
Углерод оксид 1,7 3,06 3,4 6,6 7,47 8,3 1,1 0,8 Углеводороды предельные С1-С5 0,14 0,189 0,21 1 1,35 1,5 0,11 0,9 Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,442 0,081 1 9 9		Сера диоксид (Ангидрид	0,009	0,009	0,01	0,049	0,054	0,061	0,008	0,95
Углеводороды предельные C1-C5		сернистый)					9			
Автобус, большой, дизель Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,442 0,081 1 7 2 2 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 сернистый) Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,009 0,039 0,039 0,003 1 9 2 2 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Углерод оксид	1,7	3,06	3,4	6,6	7,47	8,3	1,1	0,8
Азота диоксид (Азот (IV) оксид) 0,552 0,832 0,832 2,72 2,72 2,72 0,504 1 Азот (II) оксид (Азота оксид) 0,089 0,135 0,135 0,442 0,442 0,442 0,081 1 7 2 2 9 Углерод (Сажа) 0,02 0,036 0,04 0,2 0,27 0,3 0,02 0,8 Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 сернистый) Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азот (II) оксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,009 0,039 0,039 0,003 1 9 2 2 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Углеводороды предельные С1-С5	0,14	0,189	0,21	1	1,35	1,5	0,11	0,9
Азот (II) оксид (Азота оксид) О,089 О,135 О,135 О,442 О,442 О,442 О,442 О,081 О,02 О,036 О,04 О,2 О,27 О,3 О,02 О,8 Сера диоксид (Ангидрид О,1 О,108 О,12 О,475 О,531 О,59 О,1 О,59 О,1 О,95 Сернистый) Углерод оксид Керосин О,66 О,711 О,79 О,72 О,8 О,475 О,531 О,59 О,1 О,95 О,95 О,93 О,99 О,99 О,99 О,99 О,99 О,99 О,99	Авто	бус, большой, дизель								
Углерод (Сажа) Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 сернистый) Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,039 1 9 2 2 2 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Азота диоксид (Азот (IV) оксид)	0,552	0,832	0,832	2,72	2,72	2,72	0,504	1
Углерод (Сажа) Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 сернистый) Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 9 2 2 9 9 0,039 0,039 0,039 0,031 1 9 2 2 9 9 0 0,005 сернистый) Углерод оксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Азот (II) оксид (Азота оксид)	0,089	0,135	0,135	0,442	0,442	0,442	0,081	1
Сера диоксид (Ангидрид 0,1 0,108 0,12 0,475 0,531 0,59 0,1 0,95 Сернистый) 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,039 0,003 1 Сера диоксид (Ангидрид О,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 Сернистый) 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9			7	2	2				9	
сернистый) 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 Сера диоксид (Ангидрид о,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Углерод (Сажа)	0,02	0,036	0,04	0,2	0,27	0,3	0,02	0,8
Углерод оксид 1,49 2,007 2,23 4,9 5,31 5,9 0,93 0,9 Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 9 2 2 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Сера диоксид (Ангидрид	0,1	0,108	0,12	0,475	0,531	0,59	0,1	0,95
Керосин 0,66 0,711 0,79 0,7 0,72 0,8 0,47 0,9 Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 Сера диоксид (Ангидрид о,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		сернистый)								
Автобус, особо малый, карбюр., бензин Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 9 2 2 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 9 Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Углерод оксид	1,49	2,007	2,23	4,9	5,31	5,9	0,93	0,9
Азота диоксид (Азот (IV) оксид) 0,024 0,032 0,032 0,24 0,24 0,24 0,024 1 Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 9 2 2 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Керосин	0,66	0,711	0,79	0,7	0,72	0,8	0,47	0,9
Азот (II) оксид (Азота оксид) 0,003 0,005 0,005 0,039 0,039 0,039 0,003 1 9 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Авто	бус, особо малый, карбюр., бензин								
9 2 2 9 9 9 Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Азота диоксид (Азот (IV) оксид)	0,024	0,032	0,032	0,24	0,24	0,24	0,024	1
Сера диоксид (Ангидрид 0,012 0,012 0,014 0,08 0,09 0,1 0,011 0,95 сернистый) 6 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Азот (II) оксид (Азота оксид)	0,003	0,005	0,005	0,039	0,039	0,039	0,003	1
сернистый) 6 8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9			9	2	2				9	
Углерод оксид 4,5 7,92 8,8 15,8 17,82 19,8 3,5 0,8 Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		Сера диоксид (Ангидрид	0,012	0,012	0,014	0,08	0,09	0,1	0,011	0,95
Бензин (нефтяной, 0,44 0,594 0,66 2 2,61 2,9 0,35 0,9		сернистый)		6						
		Углерод оксид	4,5	7,92	8,8	15,8	17,82	19,8	3,5	0,8
		Бензин (нефтяной,	0,44	0,594	0,66	2	2,61	2,9	0,35	0,9
малосернистый)		малосернистый)								

Время прогрева двигателей в зависимости от температуры воздуха и условий хранения приведено в таблице 1.1.4.

Таблица 1.1.4 - Время прогрева двигателей, мин

Согласовано

Взам. инв. №

	Время прогрева при температуре							
			воз	духа, м	ИИН			
Тип автотранспортного средства	выш	+5	-5	-10	-15	-20	ниже	
	+5°C	-5°C	-10°C	-15°C	-20°C	-25°C	-25°C	
Легковой, объем 1,8-3,5л, инжект., бензин	1	1	2	2	2	2	2	
Легковой, объем 1,2-1,8л, инжект., газ	1	1	2	2	2	2	2	
Автобус, большой, дизель	4	6	12	20	25	30	30	
Автобус, особо малый, карбюр., бензин	4	6	12	20	25	30	30	

	Авто	бус, с	собо	малый,	карбы	ор., бензин	4	6	12	20	25	30	30	
		Pac	чет і	одового	и и	аксимально разовог	о выд	делени	я заг	нкнгка	ощих	вещес	тв в	_
	атмо	сферу	у прин	веден ни	же.	•			•	-				
	Зарубежные													
	$\mathbf{M}^{\mathrm{T}}_{1} = 0.024 \cdot 1 + 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0576 \ \varepsilon;$													
						0.4	25.1	тт.	<u> </u>	7.2			$\neg \neg$	Іист
						90	J35.1	$-\Pi N$	1000	J 3			<u> </u>	17101
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата								8	86

87

```
M^{\Pi}_{2} = 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0336 \, \varepsilon;
\mathbf{M}^{\Pi}_{30I} = (0.0656 + 0.0336) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.0001012 \, \text{m/zod};
\mathbf{G}^{\Pi}_{30I} = (0.0656 \cdot 2 + 0.0336 \cdot 1) / 3600 = 0.0000458 \, \epsilon/c;
M_I^X = 0.032 \cdot 2 + 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0976 \ \epsilon
M^{X}_{2} = 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0336 c;
\mathbf{M}^{X}_{30I} = (0.0976 + 0.0336) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0002007 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (0.0976 \cdot 2 + 0.0336 \cdot 1) / 3600 = 0.0000636 \, \epsilon/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.032 \cdot 2 + 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0976 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{2} = 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0336 \ \epsilon;
M^{X-10..-15^{\circ}C}_{30I} = (0.0976 + 0.0336) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000669 \, \text{m/zod};
G^{X-10..-15^{\circ}C}_{301} = (0.0976 \cdot 2 + 0.0336 \cdot 1) / 3600 = 0.0000636 \ z/c;
M^{X-15...20^{\circ}C}_{I} = 0.032 \cdot 2 + 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0976 \, \epsilon;
M^{X-15..-20^{\circ}C}_{2} = 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0336 \ \epsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{30I} = (0.0976 + 0.0336) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0000089 \text{ m/zod};
\mathbf{G}^{X-15..-20^{\circ}C}_{301} = (0.0976 \cdot 2 + 0.0336 \cdot 1) / 3600 = 0.0000636 \ z/c;
M = 0.0002791 + 0.0001012 + 0.0002007 + 0.0000669 + 0.0000089 = 0.0006568  m/20\partial;
G = \max\{0.0000413; 0.0000458; 0.0000636; 0.0000636; 0.0000636\} = 0.0000636  c/c.
M^{T}_{I} = 0.0039 \cdot 1 + 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00936 z;
M^{\mathrm{T}}_{2} = 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00546 \, \varepsilon;
M^{T}_{304} = (0,00936 + 0,00546) \cdot 180 \cdot 17 \cdot 10^{-6} = 0,0000453 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{304} = (0.00936 \cdot 2 + 0.00546 \cdot 1) / 3600 = 0.0000067 \, z/c;
\mathbf{M}^{\Pi}_{I} = 0.0052 \cdot 1 + 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.01066 \, \varepsilon;
M^{\Pi}_{2} = 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00546 \, \epsilon;
M^{\Pi}_{304} = (0.01066 + 0.00546) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.0000164 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (0.01066 \cdot 2 + 0.00546 \cdot 1) / 3600 = 0.0000074 \, \epsilon/c;
\mathbf{M}^{X}_{I} = 0.0052 \cdot 2 + 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.01586 \, \varepsilon;
M^{X}_{2} = 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00546 c;
M^{X}_{304} = (0.01586 + 0.00546) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0000326 \,\text{m/zod};
G^{X}_{304} = (0.01586 \cdot 2 + 0.00546 \cdot 1) / 3600 = 0.0000103 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.0052 \cdot 2 + 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.01586 \, \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00546 \, \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (0.01586 + 0.00546) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000109 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (0.01586 \cdot 2 + 0.00546 \cdot 1) / 3600 = 0.0000103 \ z/c;
M^{\text{X-15..-20}^{\circ}\text{C}}_{I} = 0.0052 \cdot 2 + 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.01586 \ \varepsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{2} = 0.0312 \cdot 0.05 + 0.0039 \cdot 1 = 0.00546 \, \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (0.01586 + 0.00546) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0000014 \,\text{m/zod};
G^{X-15..-20^{\circ}C}_{304} = (0.01586 \cdot 2 + 0.00546 \cdot 1) / 3600 = 0.0000103 \ z/c;
M = 0.0000453 + 0.0000164 + 0.0000326 + 0.0000109 + 0.0000014 = 0.0001067 \text{ m/zod};
G = \max\{0.0000067; 0.0000074; 0.0000103; 0.0000103; 0.0000103\} = 0.0000103 \ c/c.
M^{T}_{I} = 0.011 \cdot 1 + 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.02385 z;
M^{T}_{2} = 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.01285 z;
M^{\mathrm{T}}_{330} = (0.02385 + 0.01285) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0001123 \,\text{m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.02385 \cdot 2 + 0.01285 \cdot 1) / 3600 = 0.0000168 \, \epsilon/c;
\mathbf{M}^{\Pi_I} = 0.0117 \cdot 1 + 0.0639 \cdot 0.05 + 0.01 \cdot 1 = 0.024895 \, \varepsilon;
M^{\Pi}_{2} = 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.01285 \ \epsilon;
M^{\Pi}_{330} = (0.024895 + 0.01285) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.0000385 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.024895 \cdot 2 + 0.01285 \cdot 1) / 3600 = 0.0000174 \, c/c;
```

 $9035.1 - \Pi MOOC 3$

 $M^{\mathrm{T}}_{2} = 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0336 \, \varepsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

№подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{T}_{30I} = (0.0576 + 0.0336) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0002791 \text{ m/zod};$

 $\mathbf{G}^{\mathrm{T}}_{30I} = (0.0576 \cdot 2 + 0.0336 \cdot 1) / 3600 = 0.0000413 \ z/c;$ $\mathbf{M}^{\mathrm{H}}_{I} = 0.032 \cdot 1 + 0.192 \cdot 0.05 + 0.024 \cdot 1 = 0.0656 \ z;$

88

 $9035.1 - \Pi MOOC 3$

```
\mathbf{G}^{X}_{330} = (0.03955 \cdot 2 + 0.01285 \cdot 1) / 3600 = 0.0000255 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{I} = 0.013 \cdot 2 + 0.071 \cdot 0.05 + 0.01 \cdot 1 = 0.03955 \, \varepsilon;
M^{X-10..-15^{\circ}C}_{2} = 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.01285 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (0.03955 + 0.01285) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000267 \text{ m/200};
G^{X-10..-15^{\circ}C}_{330} = (0.03955 \cdot 2 + 0.01285 \cdot 1) / 3600 = 0.0000255 \ e/c;
\mathbf{M}^{\text{X-15..-20}^{\circ}\text{C}}{}_{l} = 0.013 \cdot 2 + 0.071 \cdot 0.05 + 0.01 \cdot 1 = 0.03955 \ \varepsilon;
\mathbf{M}^{\text{X}-15...20^{\circ}\text{C}}_{2} = 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.01285 \ \epsilon;
M^{\text{X-15...20^{\circ}C}}_{330} = (0.03955 + 0.01285) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0000036 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{330} = (0.03955 \cdot 2 + 0.01285 \cdot 1) / 3600 = 0.0000255 \ c/c;
M = 0.0001123 + 0.0000385 + 0.0000802 + 0.0000267 + 0.0000036 = 0.0002613 \text{ m/zod};
G = \max\{0,0000168; 0,0000174; 0,0000255; 0,0000255; 0,0000255\} = 0,0000255 \ \epsilon/c.
M^{T}_{I} = 2.9 \cdot 1 + 9.3 \cdot 0.05 + 1.9 \cdot 1 = 5.265 \ \epsilon;
M^{\mathrm{T}}_{2} = 9.3 \cdot 0.05 + 1.9 \cdot 1 = 2.365 \, \varepsilon;
M^{T}_{337} = (5,265 + 2,365) \cdot 180 \cdot 17 \cdot 10^{-6} = 0,0233478 \text{ m/zod};
G^{T}_{337} = (5,265 \cdot 2 + 2,365 \cdot 1) / 3600 = 0,0035819 \ z/c;
M^{\Pi}_{I} = 5.13 \cdot 1 + 10.53 \cdot 0.05 + 1.9 \cdot 1 = 7.5565 \, \epsilon;
M^{\Pi}_2 = 9.3 \cdot 0.05 + 1.9 \cdot 1 = 2.365 z;
M^{\Pi}_{337} = (7,5565 + 2,365) \cdot 60 \cdot 17 \cdot 10^{-6} = 0,0101199 \text{ m/sod};
G^{\Pi}_{337} = (7,5565 \cdot 2 + 2,365 \cdot 1) / 3600 = 0,004855 \, c/c;
M^{X}_{I} = 5.7 \cdot 2 + 11.7 \cdot 0.05 + 1.9 \cdot 1 = 13.885 \ \epsilon;
M^{X}_{2} = 9.3 \cdot 0.05 + 1.9 \cdot 1 = 2.365 z;
M^{X}_{337} = (13,885 + 2,365) \cdot 90 \cdot 17 \cdot 10^{-6} = 0,0248625 \, \text{m/zod};
G^{X}_{337} = (13,885 \cdot 2 + 2,365 \cdot 1) / 3600 = 0,0083708 \, c/c;
M^{X-10..-15^{\circ}C}_{I} = 5.7 \cdot 2 + 11.7 \cdot 0.05 + 1.9 \cdot 1 = 13.885 \ \epsilon;
M^{X-10..-15^{\circ}C}_{2} = 9.3 \cdot 0.05 + 1.9 \cdot 1 = 2.365 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (13,885 + 2,365) \cdot 30 \cdot 17 \cdot 10^{-6} = 0,0082875 \text{ m/200};
G^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (13,885 \cdot 2 + 2,365 \cdot 1) / 3600 = 0,0083708 \ z/c;
M^{X-15..-20^{\circ}C}_{l} = 5.7 \cdot 2 + 11.7 \cdot 0.05 + 1.9 \cdot 1 = 13.885 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 9.3 \cdot 0.05 + 1.9 \cdot 1 = 2.365 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (13,885 + 2,365) \cdot 4 \cdot 17 \cdot 10^{-6} = 0,001105 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{337} = (13.885 \cdot 2 + 2.365 \cdot 1) / 3600 = 0.0083708 \ z/c;
M = 0.0233478 + 0.0101199 + 0.0248625 + 0.0082875 + 0.001105 = 0.0677227 \text{ m/zod};
G = \max\{0.0035819; 0.004855; 0.0083708; 0.0083708; \underline{0.0083708}\} = 0.0083708 \ z/c.
\mathbf{M}^{\mathrm{T}}_{l} = 0.18 \cdot 1 + 1.4 \cdot 0.05 + 0.15 \cdot 1 = 0.4 \, \varepsilon;
M^{T}_{2} = 1.4 \cdot 0.05 + 0.15 \cdot 1 = 0.22 \ z;
M^{T}_{2704} = (0.4 + 0.22) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0018972 \text{ m/zod};
G^{T}_{2704} = (0.4 \cdot 2 + 0.22 \cdot 1) / 3600 = 0.0002833 \ \epsilon/c;
M^{\Pi}_{l} = 0.243 \cdot 1 + 1.89 \cdot 0.05 + 0.15 \cdot 1 = 0.4875 \ \epsilon;
\mathbf{M}^{\Pi_2} = 1.4 \cdot 0.05 + 0.15 \cdot 1 = 0.22 \ \varepsilon;
M^{\Pi}_{2704} = (0.4875 + 0.22) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.0007217 \text{ m/zod};
\mathbf{G}^{\Pi}_{2704} = (0.4875 \cdot 2 + 0.22 \cdot 1) / 3600 = 0.0003319 \ \epsilon/c;
M_{I}^{X} = 0.27 \cdot 2 + 2.1 \cdot 0.05 + 0.15 \cdot 1 = 0.795 \ \varepsilon;
\mathbf{M}^{X}_{2} = 1,4 \cdot 0,05 + 0,15 \cdot 1 = 0,22 \ \varepsilon;
M^{X}_{2704} = (0.795 + 0.22) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.001553 \text{ m/zod};
G^{X}_{2704} = (0.795 \cdot 2 + 0.22 \cdot 1) / 3600 = 0.0005028 \ z/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.27 \cdot 2 + 2.1 \cdot 0.05 + 0.15 \cdot 1 = 0.795 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 1,4 \cdot 0,05 + 0,15 \cdot 1 = 0,22 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0.795 + 0.22) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0005177 \text{ m/zod};
```

 $M_I^{X} = 0.013 \cdot 2 + 0.071 \cdot 0.05 + 0.01 \cdot 1 = 0.03955 \ \epsilon$;

 $M^{X}_{330} = (0.03955 + 0.01285) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0000802 \, \text{m/zod};$

 $M^{X}_{2} = 0.057 \cdot 0.05 + 0.01 \cdot 1 = 0.01285 \ \varepsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

89

```
G = \max\{0,0002833; 0,0003319; 0,0005028; 0,0005028; 0,0005028\} = 0,0005028 \ z/c.
Отечественные
M^{T}_{I} = 0.016 \cdot 1 + 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0388 z;
M^{\mathrm{T}}_{2} = 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0228 \, \varepsilon;
M^{T}_{30I} = (0.0388 + 0.0228) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0001885 \text{ m/sod};
G^{T}_{30I} = (0.0388 \cdot 2 + 0.0228 \cdot 1) / 3600 = 0.0000279 \ z/c;
\mathbf{M}^{\Pi}_{I} = 0.024 \cdot 1 + 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0468 \, \varepsilon;
\mathbf{M}^{\Pi}_{2} = 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0228 \ \varepsilon;
M^{\Pi}_{30I} = (0.0468 + 0.0228) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.000071 \text{ m/zod};
\mathbf{G}^{\Pi}_{30I} = (0.0468 \cdot 2 + 0.0228 \cdot 1) / 3600 = 0.0000323 \ z/c;
M^{X}_{I} = 0.024 \cdot 2 + 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0708 \ \epsilon;
M^{X}_{2} = 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0228 \ \varepsilon;
M^{X}_{301} = (0.0708 + 0.0228) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0001432 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (0.0708 \cdot 2 + 0.0228 \cdot 1) / 3600 = 0.0000457 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{I} = 0.024 \cdot 2 + 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0708 \, \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0228 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{30I} = (0.0708 + 0.0228) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000477 \text{ m/sod};
G^{X-10..-15^{\circ}C}_{30I} = (0.0708 \cdot 2 + 0.0228 \cdot 1) / 3600 = 0.0000457 \ z/c;
M^{\text{X--15..-20}^{\circ}\text{C}}_{l} = 0.024 \cdot 2 + 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0708 \ \varepsilon;
M^{X-15..-20^{\circ}C}_{2} = 0.136 \cdot 0.05 + 0.016 \cdot 1 = 0.0228 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{301} = (0.0708 + 0.0228) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0000064 \,\text{m/zod};
\mathbf{G}^{\text{X-15..-20^{\circ}C}}_{30I} = (0.0708 \cdot 2 + 0.0228 \cdot 1) / 3600 = 0.0000457 \ z/c;
M = 0.0001885 + 0.000071 + 0.0001432 + 0.0000477 + 0.0000064 = 0.0004568  m/200;
G = \max\{0.0000279; 0.0000323; 0.0000457; 0.0000457; 0.0000457\} = 0.0000457 \ c/c.
M^{T}_{I} = 0.0026 \cdot 1 + 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.006305 \, \epsilon;
M^{\mathrm{T}}_{2} = 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.003705 \, \varepsilon;
M^{\Gamma}_{304} = (0.006305 + 0.003705) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0000306 \, \text{m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.006305 \cdot 2 + 0.003705 \cdot 1) / 3600 = 0.0000045 \, z/c;
M^{\Pi}_{I} = 0.0039 \cdot 1 + 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.007605 \, \epsilon;
M^{\Pi}_{2} = 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.003705 \, \epsilon;
\mathbf{\textit{M}}^{\Pi}_{304} = (0,007605 + 0,003705) \cdot 60 \cdot 17 \cdot 10^{-6} = 0,0000115 \ \textit{m/200};
\mathbf{G}^{\Pi}_{304} = (0.007605 \cdot 2 + 0.003705 \cdot 1) / 3600 = 0.0000053 \, \epsilon/c;
\mathbf{M}^{\mathbf{X}}_{I} = 0.0039 \cdot 2 + 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.011505 \, \varepsilon;
M^{X}_{2} = 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.003705 \, \varepsilon;
M^{X}_{304} = (0.011505 + 0.003705) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0000233 \text{ m/zod};
\mathbf{G}^{X}_{304} = (0.011505 \cdot 2 + 0.003705 \cdot 1) / 3600 = 0.0000074 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{l} = 0.0039 \cdot 2 + 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.011505 c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.003705 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (0.011505 + 0.003705) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000078 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (0.011505 \cdot 2 + 0.003705 \cdot 1) / 3600 = 0.0000074 \ z/c;
\mathbf{M}^{\text{X-15..-20}^{\circ}\text{C}}{}_{1} = 0.0039 \cdot 2 + 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.011505 \ \varepsilon;
M^{X-15...-20^{\circ}C}_{2} = 0.0221 \cdot 0.05 + 0.0026 \cdot 1 = 0.003705 \, \epsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{304} = (0.011505 + 0.003705) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.000001 \text{ m/zod};
G^{\text{X-15..-20}^{\circ}\text{C}}_{304} = (0.011505 \cdot 2 + 0.003705 \cdot 1) / 3600 = 0.0000074 \ z/c;
M = 0.0000306 + 0.0000115 + 0.0000233 + 0.0000078 + 0.000001 = 0.0000742 \text{ m/zod};
                                                                             9035.1 - \Pi MOOC 3
```

 $G^{X-10..-15^{\circ}C}_{2704} = (0.795 \cdot 2 + 0.22 \cdot 1) / 3600 = 0.0005028 \ z/c;$

 $\mathbf{M}^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0.795 + 0.22) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.000069 \text{ m/zod};$ $\mathbf{G}^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0.795 \cdot 2 + 0.22 \cdot 1) / 3600 = 0.0005028 \text{ z/c};$

M = 0.0018972 + 0.0007217 + 0.001553 + 0.0005177 + 0.000069 = 0.0047585 m/20 ∂ ;

 $M^{X-15...20^{\circ}C}_{I} = 0.27 \cdot 2 + 2.1 \cdot 0.05 + 0.15 \cdot 1 = 0.795 \ \varepsilon;$

 $M^{\text{X}-15...-20^{\circ}\text{C}}_{2} = 1,4 \cdot 0,05 + 0,15 \cdot 1 = 0,22 \text{ z};$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

90

```
M^{\Pi_2} = 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01045 \ \epsilon;
M^{\Pi}_{330} = (0.019745 + 0.01045) \cdot 60 \cdot 17 \cdot 10^{-6} = 0.0000308 \, \text{m/200};
\mathbf{G}^{\Pi}_{330} = (0.019745 \cdot 2 + 0.01045 \cdot 1) / 3600 = 0.0000139 \ z/c;
M^{X_I} = 0.01 \cdot 2 + 0.061 \cdot 0.05 + 0.008 \cdot 1 = 0.03105 z;
M^{X}_{2} = 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01045 c;
M^{X}_{330} = (0.03105 + 0.01045) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0000635 \, \text{m/zod};
\mathbf{G}^{X}_{330} = (0.03105 \cdot 2 + 0.01045 \cdot 1) / 3600 = 0.0000202 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{I} = 0.01 \cdot 2 + 0.061 \cdot 0.05 + 0.008 \cdot 1 = 0.03105 \, \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01045 \, \epsilon;
M^{\text{X}-10...15^{\circ}\text{C}}_{330} = (0.03105 + 0.01045) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0000212 \text{ m/200};
G^{X-10..-15^{\circ}C}_{330} = (0.03105 \cdot 2 + 0.01045 \cdot 1) / 3600 = 0.0000202 \, c/c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{l} = 0.01 \cdot 2 + 0.061 \cdot 0.05 + 0.008 \cdot 1 = 0.03105 \ \epsilon;
\mathbf{M}^{\text{X}-15...20^{\circ}\text{C}}_{2} = 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01045 \ \varepsilon;
M^{\text{X-15...20°C}}_{330} = (0.03105 + 0.01045) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0000028 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{330} = (0.03105 \cdot 2 + 0.01045 \cdot 1) / 3600 = 0.0000202 \ z/c;
M = 0.0000915 + 0.0000308 + 0.0000635 + 0.0000212 + 0.0000028 = 0.0002098  m/20\partial;
G = \max\{0,0000137; 0,0000139; 0,0000202; 0,0000202; 0,0000202\} = 0,0000202 \ \epsilon/c.
M^{\mathrm{T}}_{l} = 1,7 \cdot 1 + 6,6 \cdot 0,05 + 1,1 \cdot 1 = 3,13 \ \varepsilon;
M^{T}_{2} = 6.6 \cdot 0.05 + 1.1 \cdot 1 = 1.43 \ \varepsilon;
M^{T}_{337} = (3.13 + 1.43) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0139536 \text{ m/zod};
G^{T}_{337} = (3.13 \cdot 2 + 1.43 \cdot 1) / 3600 = 0.0021361 \ \epsilon/c;
M^{\Pi}_{I} = 3.06 \cdot 1 + 7.47 \cdot 0.05 + 1.1 \cdot 1 = 4.5335 \, \varepsilon;
M^{\Pi_2} = 6.6 \cdot 0.05 + 1.1 \cdot 1 = 1.43 \ \varepsilon;
M^{\Pi}_{337} = (4,5335 + 1,43) \cdot 60 \cdot 17 \cdot 10^{-6} = 0,0060828 \text{ m/zod};
G^{\Pi}_{337} = (4,5335 \cdot 2 + 1,43 \cdot 1) / 3600 = 0,0029158 \, \epsilon/c;
M^{X}_{I} = 3.4 \cdot 2 + 8.3 \cdot 0.05 + 1.1 \cdot 1 = 8.315 c;
\mathbf{M}^{\mathbf{X}}_{2} = 6.6 \cdot 0.05 + 1.1 \cdot 1 = 1.43 \ \varepsilon;
M^{X}_{337} = (8,315 + 1,43) \cdot 90 \cdot 17 \cdot 10^{-6} = 0,0149099 \text{ m/zod};
G^{X_{337}} = (8,315 \cdot 2 + 1,43 \cdot 1) / 3600 = 0,0050167 \ \epsilon/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 3.4 \cdot 2 + 8.3 \cdot 0.05 + 1.1 \cdot 1 = 8.315 \ \epsilon;
M^{X-10...15^{\circ}C}_{2} = 6.6 \cdot 0.05 + 1.1 \cdot 1 = 1.43 \ \epsilon;
M^{X-10..-15^{\circ}C}_{337} = (8,315+1,43) \cdot 30 \cdot 17 \cdot 10^{-6} = 0,00497 \, m/200;
G^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (8,315 \cdot 2 + 1,43 \cdot 1) / 3600 = 0,0050167 \ z/c;
M^{X-15..-20^{\circ}C}_{I} = 3.4 \cdot 2 + 8.3 \cdot 0.05 + 1.1 \cdot 1 = 8.315 \ \epsilon;
M^{X-15..-20^{\circ}C}_{2} = 6.6 \cdot 0.05 + 1.1 \cdot 1 = 1.43 c;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (8.315 + 1.43) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.0006627 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{337} = (8,315 \cdot 2 + 1,43 \cdot 1) / 3600 = 0,0050167 \ c/c;
M = 0.0139536 + 0.0060828 + 0.0149099 + 0.00497 + 0.0006627 = 0.0405788  m/20d;
G = \max\{0.0021361; 0.0029158; 0.0050167; 0.0050167; 0.0050167\} = 0.0050167 \ z/c.
\mathbf{M}^{\mathrm{T}}_{l} = 0.14 \cdot 1 + 1 \cdot 0.05 + 0.11 \cdot 1 = 0.3 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 1 \cdot 0.05 + 0.11 \cdot 1 = 0.16 \, \varepsilon;
M^{T}_{415} = (0.3 + 0.16) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0014076 \text{ m/zod};
G^{T}_{415} = (0.3 \cdot 2 + 0.16 \cdot 1) / 3600 = 0.0002111 \ z/c;
M^{\Pi}_{I} = 0.189 \cdot 1 + 1.35 \cdot 0.05 + 0.11 \cdot 1 = 0.3665 \ \varepsilon;
M^{\Pi}_{2} = 1 \cdot 0.05 + 0.11 \cdot 1 = 0.16 c;
                                                                              9035.1 - \Pi MOOC 3
```

 $G = \max\{0.0000045; 0.0000053; 0.0000074; 0.0000074; 0.0000074\} = 0.0000074 \ z/c.$

 $M^{T}_{I} = 0.009 \cdot 1 + 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01945 \ \varepsilon;$

 $M^{\mathrm{T}}_{330} = (0.01945 + 0.01045) \cdot 180 \cdot 17 \cdot 10^{-6} = 0.0000915 \,\text{m/zod};$

 $G^{T}_{330} = (0.01945 \cdot 2 + 0.01045 \cdot 1) / 3600 = 0.0000137 \ \epsilon/c;$ $M^{\Pi}_{l} = 0.009 \cdot 1 + 0.0549 \cdot 0.05 + 0.008 \cdot 1 = 0.019745 \ \epsilon;$

 $M^{T}_{2} = 0.049 \cdot 0.05 + 0.008 \cdot 1 = 0.01045 z;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

91

 $9035.1 - \Pi MOOC 3$

```
M^{X}_{415} = (0.605 + 0.16) \cdot 90 \cdot 17 \cdot 10^{-6} = 0.0011705 \text{ m/zod};
G^{X}_{415} = (0.605 \cdot 2 + 0.16 \cdot 1) / 3600 = 0.0003806 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.21 \cdot 2 + 1.5 \cdot 0.05 + 0.11 \cdot 1 = 0.605 c;
M^{X-10..-15^{\circ}C}_{2} = 1 \cdot 0.05 + 0.11 \cdot 1 = 0.16 \ \varepsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{415} = (0.605 + 0.16) \cdot 30 \cdot 17 \cdot 10^{-6} = 0.0003902 \text{ m/zoo};
G^{\text{X-10..-15}^{\circ}\text{C}}_{415} = (0.605 \cdot 2 + 0.16 \cdot 1) / 3600 = 0.0003806 \ z/c;
\mathbf{M}^{\text{X}-15...-20^{\circ}\text{C}}_{I} = 0.21 \cdot 2 + 1.5 \cdot 0.05 + 0.11 \cdot 1 = 0.605 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 1 \cdot 0.05 + 0.11 \cdot 1 = 0.16 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{415} = (0.605 + 0.16) \cdot 4 \cdot 17 \cdot 10^{-6} = 0.000052 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{415} = (0.605 \cdot 2 + 0.16 \cdot 1) / 3600 = 0.0003806 \ z/c;
M = 0.0014076 + 0.000537 + 0.0011705 + 0.0003902 + 0.000052 = 0.0035573  m/20\partial;
G = \max\{0,0002111; 0,0002481; 0,0003806; 0,0003806; 0,0003806\} = 0,0003806 \ \epsilon/c.
Автобусы зарубежные
M^{T}_{I} = 0.552 \cdot 4 + 2.72 \cdot 0.05 + 0.504 \cdot 1 = 2.848 \ \epsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 2.72 \cdot 0.05 + 0.504 \cdot 1 = 0.64 \, \varepsilon;
M^{T}_{301} = (2.848 + 0.64) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0012557 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (2,848 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0009689 \, \varepsilon/c;
M^{\Pi_I} = 0.832 \cdot 6 + 2.72 \cdot 0.05 + 0.504 \cdot 1 = 5.632 \ \varepsilon;
M^{\Pi}_{2} = 2.72 \cdot 0.05 + 0.504 \cdot 1 = 0.64 \ \varepsilon;
M^{\Pi}_{301} = (5,632 + 0,64) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0007526 \text{ m/sod};
\mathbf{G}^{\Pi}_{301} = (5.632 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0017422 \, \epsilon/c;
\mathbf{M}^{\mathbf{X}}_{I} = 0.832 \cdot 12 + 2.72 \cdot 0.05 + 0.504 \cdot 1 = 10.624 \, \varepsilon;
M^{X}_{2} = 2.72 \cdot 0.05 + 0.504 \cdot 1 = 0.64 \ \varepsilon;
M^{X}_{301} = (10,624 + 0,64) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0020275 \text{ m/zod};
\mathbf{G}^{X}_{30I} = (10,624 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0031289 \, \epsilon/c;
M^{X-10..-15^{\circ}C}_{I} = 0.832 \cdot 20 + 2.72 \cdot 0.05 + 0.504 \cdot 1 = 17.28 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 2,72 \cdot 0,05 + 0,504 \cdot 1 = 0,64 \ \varepsilon;
M^{\text{X-}10..-15^{\circ}\text{C}}_{301} = (17,28+0,64) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010752 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{301} = (17.28 \cdot 1 + 0.64 \cdot 1) / 3600 = 0.0049778 \ c/c;
\mathbf{M}^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 0.832 \cdot 25 + 2.72 \cdot 0.05 + 0.504 \cdot 1 = 21.44 \, \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 2.72 \cdot 0.05 + 0.504 \cdot 1 = 0.64 \ \epsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{30I} = (21,44+0,64) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0001766 \text{ m/200};
G^{X-15..-20^{\circ}C}_{301} = (21,44 \cdot 1 + 0,64 \cdot 1) / 3600 = 0,0061333 \ z/c;
M = 0.0012557 + 0.0007526 + 0.0020275 + 0.0010752 + 0.0001766 = 0.0052877  m/20\partial:
G = \max\{0.0009689; 0.0017422; 0.0031289; 0.0049778; 0.0061333\} = 0.0061333 \ \epsilon/c.
M^{T}_{I} = 0.0897 \cdot 4 + 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.4628 z;
M^{\mathrm{T}}_{2} = 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.104 \, \varepsilon;
M^{\mathrm{T}}_{304} = (0.4628 + 0.104) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.000204 \, \text{m/200};
G^{T}_{304} = (0.4628 \cdot 1 + 0.104 \cdot 1) / 3600 = 0.0001574 \ z/c;
M^{\Pi}_{I} = 0.1352 \cdot 6 + 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.9152 \, \epsilon;
M^{\Pi}_{2} = 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.104 \, \epsilon;
M^{\Pi}_{304} = (0.9152 + 0.104) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001223 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.9152 \cdot 1 + 0.104 \cdot 1) / 3600 = 0.0002831 \, z/c;
M^{X}_{I} = 0.1352 \cdot 12 + 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 1.7264 c;
M^{X}_{2} = 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.104 c;
M^{X}_{304} = (1,7264 + 0,104) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0003295 \text{ m/200};
G^{X}_{304} = (1.7264 \cdot 1 + 0.104 \cdot 1) / 3600 = 0.0005084 \ z/c;
```

 $\mathbf{M}^{\Pi}_{415} = (0,3665 + 0,16) \cdot 60 \cdot 17 \cdot 10^{-6} = 0,000537 \text{ m/200};$ $\mathbf{G}^{\Pi}_{415} = (0,3665 \cdot 2 + 0,16 \cdot 1) / 3600 = 0,0002481 \text{ z/c};$

 $M_{I}^{X} = 0.21 \cdot 2 + 1.5 \cdot 0.05 + 0.11 \cdot 1 = 0.605 \ \epsilon;$

 $\mathbf{M}^{X}_{2} = 1 \cdot 0.05 + 0.11 \cdot 1 = 0.16 \, z;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

92

 $9035.1 - \Pi MOOC 3$

```
G^{\text{X-10..-15}^{\circ}\text{C}}_{304} = (2,808 \cdot 1 + 0,104 \cdot 1) / 3600 = 0,0008089 \ z/c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 0.1352 \cdot 25 + 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 3.484 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.104 \text{ z};
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (3,484+0,104) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000287 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{304} = (3,484 \cdot 1 + 0,104 \cdot 1) / 3600 = 0,0009967 \ z/c;
M = 0.000204 + 0.0001223 + 0.0003295 + 0.0001747 + 0.0000287 = 0.0008592 \text{ m/zod};
G = \max\{0,0001574; 0,0002831; 0,0005084; 0,0008089; \underline{0,0009967}\} = 0,0009967 \ z/c.
M^{\mathrm{T}}_{l} = 0.02 \cdot 4 + 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.11 \, \varepsilon;
M^{\mathrm{T}}_{2} = 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.03 \ \varepsilon;
M^{T}_{328} = (0.11 + 0.03) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0000504 \, \text{m/zod};
G^{T}_{328} = (0.11 \cdot 1 + 0.03 \cdot 1) / 3600 = 0.0000389 \ z/c;
M^{\Pi}_{I} = 0.036 \cdot 6 + 0.27 \cdot 0.05 + 0.02 \cdot 1 = 0.2495 \ \epsilon;
M^{\Pi}_{2} = 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.03 \ \varepsilon;
M^{\Pi}_{328} = (0.2495 + 0.03) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0000335 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (0.2495 \cdot 1 + 0.03 \cdot 1) / 3600 = 0.0000776 \, \epsilon/c;
M_{I}^{X} = 0.04 \cdot 12 + 0.3 \cdot 0.05 + 0.02 \cdot 1 = 0.515 \ \epsilon;
\mathbf{M}^{\mathbf{X}}_{2} = 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.03 \ \varepsilon;
M^{X}_{328} = (0.515 + 0.03) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0000981 \text{ m/zod};
G^{X}_{328} = (0.515 \cdot 1 + 0.03 \cdot 1) / 3600 = 0.0001514 \, e/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 0.04 \cdot 20 + 0.3 \cdot 0.05 + 0.02 \cdot 1 = 0.835 \ \varepsilon;
\mathbf{M}^{\text{X}-10...15^{\circ}\text{C}}_{2} = 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.03 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (0.835 + 0.03) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.0000519 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (0.835 \cdot 1 + 0.03 \cdot 1) / 3600 = 0.0002403 \ z/c;
M^{X-15...-20^{\circ}C}_{I} = 0.04 \cdot 25 + 0.3 \cdot 0.05 + 0.02 \cdot 1 = 1.035 \ \epsilon;
M^{\text{X}-15...-20^{\circ}\text{C}}_{2} = 0.2 \cdot 0.05 + 0.02 \cdot 1 = 0.03 \ \varepsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (1,035+0,03) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000085 \text{ m/200};
G^{X-15..-20^{\circ}C}_{328} = (1,035 \cdot 1 + 0,03 \cdot 1) / 3600 = 0,0002958 \ z/c;
M = 0.0000504 + 0.0000335 + 0.0000981 + 0.0000519 + 0.0000085 = 0.0002425 \text{ m/zod};
G = \max\{0,0000389; 0,0000776; 0,0001514; 0,0002403; 0,0002958\} = 0,0002958 \ \epsilon/c.
M^{T}_{I} = 0.1 \cdot 4 + 0.475 \cdot 0.05 + 0.1 \cdot 1 = 0.52375 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.475 \cdot 0.05 + 0.1 \cdot 1 = 0.12375 \ \varepsilon;
M^{T}_{330} = (0.52375 + 0.12375) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0002331 \text{ m/zod};
\boldsymbol{G}^{\mathrm{T}}_{330} = (0.52375 \cdot 1 + 0.12375 \cdot 1) / 3600 = 0.0001799 \ c/c;
\mathbf{M}^{\Pi}_{I} = 0.108 \cdot 6 + 0.531 \cdot 0.05 + 0.1 \cdot 1 = 0.77455 \, \varepsilon;
M^{\Pi}_{2} = 0.475 \cdot 0.05 + 0.1 \cdot 1 = 0.12375 \ \varepsilon;
M^{\Pi}_{330} = (0.77455 + 0.12375) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0001078 \, \text{m/zod};
\mathbf{G}^{\Pi}_{330} = (0.77455 \cdot 1 + 0.12375 \cdot 1) / 3600 = 0.0002495 \, \epsilon/c;
\mathbf{M}^{\mathbf{X}}_{l} = 0.12 \cdot 12 + 0.59 \cdot 0.05 + 0.1 \cdot 1 = 1.5695 \ \varepsilon;
\mathbf{M}^{X_2} = 0.475 \cdot 0.05 + 0.1 \cdot 1 = 0.12375 \ \varepsilon;
M^{X}_{330} = (1,5695 + 0,12375) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0003048 \, \text{m/zod};
\mathbf{G}^{X}_{330} = (1,5695 \cdot 1 + 0,12375 \cdot 1) / 3600 = 0,0004703 \ z/c;
\mathbf{M}^{X-10..-15^{\circ}C}_{l} = 0.12 \cdot 20 + 0.59 \cdot 0.05 + 0.1 \cdot 1 = 2.5295 \ \epsilon;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2} = 0,475 \cdot 0,05 + 0,1 \cdot 1 = 0,12375 \ \epsilon;
M^{X-10..-15^{\circ}C}_{330} = (2.5295 + 0.12375) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.0001592 \text{ m/200};
G^{X-10..-15^{\circ}C}_{330} = (2,5295 \cdot 1 + 0,12375 \cdot 1) / 3600 = 0,000737 \ c/c;
\mathbf{M}^{\text{X}-15...20^{\circ}\text{C}}_{l} = 0.12 \cdot 25 + 0.59 \cdot 0.05 + 0.1 \cdot 1 = 3.1295 \ \varepsilon;
M^{X-15..-20^{\circ}C}_{2} = 0,475 \cdot 0,05 + 0,1 \cdot 1 = 0,12375 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (3,1295 + 0,12375) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,000026 \text{ m/zod};
```

 $M^{X-10..-15^{\circ}C}_{I} = 0.1352 \cdot 20 + 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 2.808 \ \varepsilon;$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (2.808 + 0.104) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.0001747 \text{ m/200};$

 $M^{X-10..-15^{\circ}C}_{2} = 0.442 \cdot 0.05 + 0.0819 \cdot 1 = 0.104 z;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

93

```
G^{T}_{337} = (7,135 \cdot 1 + 1,175 \cdot 1) / 3600 = 0,0023083 \ z/c;
M^{\Pi_I} = 2.007 \cdot 6 + 5.31 \cdot 0.05 + 0.93 \cdot 1 = 13.2375 \ \epsilon;
\mathbf{M}^{\Pi}_{2} = 4.9 \cdot 0.05 + 0.93 \cdot 1 = 1.175 \, c;
M^{\Pi}_{337} = (13,2375 + 1,175) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0017295 \text{ m/200};
\mathbf{G}^{\Pi}_{337} = (13,2375 \cdot 1 + 1,175 \cdot 1) / 3600 = 0,0040035 \, c/c;
M^{X_I} = 2.23 \cdot 12 + 5.9 \cdot 0.05 + 0.93 \cdot 1 = 27.985 \, \epsilon;
\mathbf{M}^{X}_{2} = 4.9 \cdot 0.05 + 0.93 \cdot 1 = 1.175 \, \varepsilon;
M^{X}_{337} = (27,985 + 1,175) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0052488 \, \text{m/zod};
G^{X}_{337} = (27,985 \cdot 1 + 1,175 \cdot 1) / 3600 = 0,0081 \ z/c;
M^{X-10..-15^{\circ}C}_{l} = 2,23 \cdot 20 + 5,9 \cdot 0,05 + 0,93 \cdot 1 = 45,825 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 4.9 \cdot 0.05 + 0.93 \cdot 1 = 1.175 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (45,825+1,175) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,00282 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (45,825 \cdot 1 + 1,175 \cdot 1) / 3600 = 0,0130556 \, c/c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 2,23 \cdot 25 + 5,9 \cdot 0,05 + 0,93 \cdot 1 = 56,975 \ \varepsilon;
M^{\text{X-15..-20}^{\circ}\text{C}}_{2} = 4.9 \cdot 0.05 + 0.93 \cdot 1 = 1.175 \text{ c};
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (56,975+1,175) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0004652 \text{ m/200};
G^{\text{X-15..-20}^{\circ}\text{C}}_{337} = (56,975 \cdot 1 + 1,175 \cdot 1) / 3600 = 0,0161528 \ c/c;
M = 0.0029916 + 0.0017295 + 0.0052488 + 0.00282 + 0.0004652 = 0.0132551  m/20\partial;
G = \max\{0.0023083; 0.0040035; 0.0081; 0.0130556; 0.0161528\} = 0.0161528 \ \epsilon/c.
M^{T}_{I} = 0.66 \cdot 4 + 0.7 \cdot 0.05 + 0.47 \cdot 1 = 3.145 \ \epsilon;
M^{\mathrm{T}}_{2} = 0.7 \cdot 0.05 + 0.47 \cdot 1 = 0.505 \, \varepsilon;
M^{T}_{2732} = (3,145 + 0,505) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,001314 \text{ m/zod};
G^{T}_{2732} = (3.145 \cdot 1 + 0.505 \cdot 1) / 3600 = 0.0010139 \ z/c;
\mathbf{M}^{\Pi}_{I} = 0.711 \cdot 6 + 0.72 \cdot 0.05 + 0.47 \cdot 1 = 4.772 \, \varepsilon;
\mathbf{M}^{\Pi}_{2} = 0.7 \cdot 0.05 + 0.47 \cdot 1 = 0.505 \, \varepsilon;
M^{\Pi}_{2732} = (4,772 + 0,505) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0006332 \text{ m/zod};
G^{\Pi}_{2732} = (4,772 \cdot 1 + 0,505 \cdot 1) / 3600 = 0,0014658 \ z/c;
\mathbf{M}^{X}_{I} = 0.79 \cdot 12 + 0.8 \cdot 0.05 + 0.47 \cdot 1 = 9.99 \ \varepsilon;
M^{X}_{2} = 0.7 \cdot 0.05 + 0.47 \cdot 1 = 0.505 \ \varepsilon;
M^{X}_{2732} = (9.99 + 0.505) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0018891 \text{ m/zod};
G^{X}_{2732} = (9.99 \cdot 1 + 0.505 \cdot 1) / 3600 = 0.0029153 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.79 \cdot 20 + 0.8 \cdot 0.05 + 0.47 \cdot 1 = 16.31 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.7 \cdot 0.05 + 0.47 \cdot 1 = 0.505 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = (16,31+0,505) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0010089 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (16.31 \cdot 1 + 0.505 \cdot 1) / 3600 = 0.0046708 \ z/c;
M^{X-15..-20^{\circ}C}_{l} = 0.79 \cdot 25 + 0.8 \cdot 0.05 + 0.47 \cdot 1 = 20.26 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 0.7 \cdot 0.05 + 0.47 \cdot 1 = 0.505 \ \epsilon;
M^{X-15...20^{\circ}C}_{2732} = (20.26 + 0.505) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0001661 \text{ m/200};
G^{X-15..-20^{\circ}C}_{2732} = (20,26 \cdot 1 + 0,505 \cdot 1) / 3600 = 0,0057681 \ c/c;
M = 0.001314 + 0.0006332 + 0.0018891 + 0.0010089 + 0.0001661 = 0.0050114  m/20\partial;
G = \max\{0.0010139; 0.0014658; 0.0029153; 0.0046708; 0.0057681\} = 0.0057681  c/c.
Автобусы отечественные
\mathbf{M}^{\mathrm{T}}_{I} = 0.024 \cdot 4 + 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.132 \, \varepsilon;
M^{\mathrm{T}}_{2} = 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.036 \, \varepsilon;
M^{T}_{30I} = (0.132 + 0.036) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0000605 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

 $G^{X-15..-20^{\circ}C}_{330} = (3,1295 \cdot 1 + 0,12375 \cdot 1) / 3600 = 0,0009037 \ c/c;$

 $M^{T}_{337} = (7,135 + 1,175) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0029916 \text{ m/zod};$

 $M^{T}_{I} = 1,49 \cdot 4 + 4,9 \cdot 0,05 + 0,93 \cdot 1 = 7,135 \ \varepsilon;$

 $M^{\mathrm{T}}_{2} = 4.9 \cdot 0.05 + 0.93 \cdot 1 = 1.175 \, \varepsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M = 0,0002331+0,0001078+0,0003048+0,0001592+0,000026 = 0,0008309 \ m/zo\partial;$ $G = \max\{0,0001799; 0,0002495; 0,0004703; 0,000737; 0,0009037\} = 0,0009037 \ z/c.$

94

```
\mathbf{G}^{\Pi}_{301} = (0.228 \cdot 1 + 0.036 \cdot 1) / 3600 = 0.0000733 \, \epsilon/c;
M_I^X = 0.032 \cdot 12 + 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.42 \ \epsilon;
M^{X}_{2} = 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.036 \ \epsilon;
M^{X}_{301} = (0.42 + 0.036) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0000821 \text{ m/zod};
\mathbf{G}^{X}_{301} = (0.42 \cdot 1 + 0.036 \cdot 1) / 3600 = 0.0001267 \ \epsilon/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.032 \cdot 20 + 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.676 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.036 \,\varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (0.676 + 0.036) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.0000427 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{30I} = (0.676 \cdot 1 + 0.036 \cdot 1) / 3600 = 0.0001978 \ c/c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 0.032 \cdot 25 + 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.836 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2} = 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.036 \ \varepsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{30I} = (0.836 + 0.036) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.000007 \text{ m/zod};
\mathbf{G}^{\text{X-15..-20°C}}_{301} = (0.836 \cdot 1 + 0.036 \cdot 1) / 3600 = 0.0002422 \, z/c;
M = 0.0000605 + 0.0000317 + 0.0000821 + 0.0000427 + 0.000007 = 0.0002239 \text{ m/zod};
G = \max\{0.0000467; 0.0000733; 0.0001267; 0.0001978; 0.0002422\} = 0.0002422 \ \epsilon/c.
M^{T}_{I} = 0.0039 \cdot 4 + 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.02145 z;
M^{T}_{2} = 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.00585 \, \epsilon;
M^{T}_{304} = (0.02145 + 0.00585) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0000098 \text{ m/zod};
G^{T}_{304} = (0.02145 \cdot 1 + 0.00585 \cdot 1) / 3600 = 0.0000076 \ \epsilon/c;
M^{\Pi}_{I} = 0.0052 \cdot 6 + 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.03705 \, \epsilon;
M^{\Pi}_{2} = 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.00585 \, \epsilon;
M^{\Pi}_{304} = (0.03705 + 0.00585) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0000051 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (0.03705 \cdot 1 + 0.00585 \cdot 1) / 3600 = 0.0000119 \ z/c;
\mathbf{M}^{X}_{I} = 0.0052 \cdot 12 + 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.06825 \, \epsilon;
M^{X}_{2} = 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.00585 z;
M^{X}_{304} = (0.06825 + 0.00585) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0000133 \text{ m/zod};
\mathbf{G}^{X}_{304} = (0.06825 \cdot 1 + 0.00585 \cdot 1) / 3600 = 0.0000206 \, \epsilon/c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{I} = 0.0052 \cdot 20 + 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.10985 \ \varepsilon;
\mathbf{M}^{\text{X}-10...15^{\circ}\text{C}}_{2} = 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.00585 \,\varepsilon;
M^{\text{X}-10...15^{\circ}\text{C}}_{304} = (0,10985 + 0,00585) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0000069 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (0,10985 \cdot 1 + 0,00585 \cdot 1) / 3600 = 0,0000321 \ z/c;
\mathbf{M}^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 0.0052 \cdot 25 + 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.13585 \ \varepsilon;
M^{\text{X-15...20°C}}_2 = 0.039 \cdot 0.05 + 0.0039 \cdot 1 = 0.00585 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (0.13585 + 0.00585) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0000011 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{304} = (0.13585 \cdot 1 + 0.00585 \cdot 1) / 3600 = 0.0000394 \ z/c;
M = 0.0000098 + 0.0000051 + 0.0000133 + 0.0000069 + 0.0000011 = 0.0000364  m/20\partial;
G = \max\{0,0000076; 0,0000119; 0,0000206; 0,0000321; 0,0000394\} = 0,0000394 \ c/c.
M^{T}_{I} = 0.012 \cdot 4 + 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.063 \ \varepsilon
M^{\mathrm{T}}_{2} = 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.015 \, \varepsilon;
M^{T}_{330} = (0.063 + 0.015) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0000281 \text{ m/sod};
G^{T}_{330} = (0.063 \cdot 1 + 0.015 \cdot 1) / 3600 = 0.0000217 \ z/c;
\mathbf{M}^{\Pi}_{I} = 0.0126 \cdot 6 + 0.09 \cdot 0.05 + 0.011 \cdot 1 = 0.0911 \, z;
\mathbf{M}^{\Pi_2} = 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.015 \, \varepsilon;
M^{\Pi}_{330} = (0.0911 + 0.015) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0000127 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.0911 \cdot 1 + 0.015 \cdot 1) / 3600 = 0.0000295 \, c/c;
M^{X}_{I} = 0.014 \cdot 12 + 0.1 \cdot 0.05 + 0.011 \cdot 1 = 0.184 z;
M^{X}_{2} = 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.015 c;
```

 $9035.1 - \Pi MOOC 3$

 $\mathbf{G}^{\mathrm{T}}_{30l} = (0.132 \cdot 1 + 0.036 \cdot 1) / 3600 = 0.0000467 \ z/c;$ $\mathbf{M}^{\mathrm{H}}_{l} = 0.032 \cdot 6 + 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.228 \ z;$

 $M^{\Pi}_{301} = (0.228 + 0.036) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0000317 \text{ m/zod};$

 $M^{\Pi}_{2} = 0.24 \cdot 0.05 + 0.024 \cdot 1 = 0.036 \, \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

95

```
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (0.296 + 0.015) \cdot 30 \cdot 2 \cdot 10^{-6} = 0.0000187 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (0.296 \cdot 1 + 0.015 \cdot 1) / 3600 = 0.0000864 \ z/c;
M^{\text{X-15..-20}^{\circ}\text{C}}_{l} = 0.014 \cdot 25 + 0.1 \cdot 0.05 + 0.011 \cdot 1 = 0.366 \ \varepsilon;
M^{X-15..-20^{\circ}C}_{2} = 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.015 \ \varepsilon;
M^{\text{X-15..-20^{\circ}C}}_{330} = (0.366 + 0.015) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.000003 \ \text{m/200};
G^{X-15..-20^{\circ}C}_{330} = (0.366 \cdot 1 + 0.015 \cdot 1) / 3600 = 0.0001058 \ c/c;
M = 0.0000281 + 0.0000127 + 0.0000358 + 0.0000187 + 0.000003 = 0.0000983  m/200;
G = \max\{0.0000217; 0.0000295; 0.0000553; 0.0000864; 0.0001058\} = 0.0001058 \ e/c.
M^{T}_{I} = 4.5 \cdot 4 + 15.8 \cdot 0.05 + 3.5 \cdot 1 = 22.29 \ \epsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 15.8 \cdot 0.05 + 3.5 \cdot 1 = 4.29 \ \varepsilon;
M^{T}_{337} = (22,29 + 4,29) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0095688 \text{ m/zod};
G^{T}_{337} = (22,29 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0073833 \ \epsilon/c;
M^{\Pi}_{I} = 7.92 \cdot 6 + 17.82 \cdot 0.05 + 3.5 \cdot 1 = 51.911 \, z;
M^{\Pi}_2 = 15.8 \cdot 0.05 + 3.5 \cdot 1 = 4.29 c;
M^{\Pi}_{337} = (51.911 + 4.29) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0067441 \text{ m/zod};
G^{\Pi}_{337} = (51,911 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0156114 \, z/c;
M^{X}_{I} = 8.8 \cdot 12 + 19.8 \cdot 0.05 + 3.5 \cdot 1 = 110.09 \ \varepsilon;
M^{X}_{2} = 15.8 \cdot 0.05 + 3.5 \cdot 1 = 4.29 \ \varepsilon;
M^{X}_{337} = (110.09 + 4.29) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0205884 \, \text{m/zod};
G^{X}_{337} = (110.09 \cdot 1 + 4.29 \cdot 1) / 3600 = 0.0317722 \, \epsilon/c;
\mathbf{M}^{\text{X}-10..-15^{\circ}\text{C}}_{l} = 8.8 \cdot 20 + 19.8 \cdot 0.05 + 3.5 \cdot 1 = 180.49 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 15.8 \cdot 0.05 + 3.5 \cdot 1 = 4.29 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (180,49+4,29) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0110868 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (180,49 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,0513278 \ c/c;
M^{X-15...-20^{\circ}C}_{I} = 8.8 \cdot 25 + 19.8 \cdot 0.05 + 3.5 \cdot 1 = 224.49 \ \varepsilon;
M^{X-15..-20^{\circ}C}_{2} = 15.8 \cdot 0.05 + 3.5 \cdot 1 = 4.29 \ z;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (224,49+4,29) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0018302 \text{ m/zod};
G^{X-15..-20^{\circ}C}_{337} = (224,49 \cdot 1 + 4,29 \cdot 1) / 3600 = 0,06355 \ c/c;
M = 0.0095688 + 0.0067441 + 0.0205884 + 0.0110868 + 0.0018302 = 0.0498184  m/200;
G = \max\{0.0073833; 0.0156114; 0.0317722; 0.0513278; 0.06355\} = 0.06355 \ \epsilon/c.
M^{\mathrm{T}}_{I} = 0.44 \cdot 4 + 2 \cdot 0.05 + 0.35 \cdot 1 = 2.21 \ \varepsilon;
\mathbf{M}^{\mathrm{T}}_{2} = 2 \cdot 0.05 + 0.35 \cdot 1 = 0.45 \, \varepsilon;
M^{T}_{2704} = (2,21+0,45) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0009576 \text{ m/zod};
G^{T}_{2704} = (2.21 \cdot 1 + 0.45 \cdot 1) / 3600 = 0.0007389 \ \epsilon/c;
M^{\Pi}_{I} = 0.594 \cdot 6 + 2.61 \cdot 0.05 + 0.35 \cdot 1 = 4.0445 \ \epsilon;
M^{\Pi}_{2} = 2 \cdot 0.05 + 0.35 \cdot 1 = 0.45 z;
M^{\Pi}_{2704} = (4,0445 + 0,45) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0005393 \text{ m/zod};
\mathbf{G}^{\Pi}_{2704} = (4,0445 \cdot 1 + 0,45 \cdot 1) / 3600 = 0,0012485 \, \varepsilon/c;
M^{X}_{I} = 0.66 \cdot 12 + 2.9 \cdot 0.05 + 0.35 \cdot 1 = 8.415 z;
M^{X}_{2} = 2 \cdot 0.05 + 0.35 \cdot 1 = 0.45 z;
M^{X}_{2704} = (8,415 + 0,45) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0015957 \text{ m/zod};
G^{X}_{2704} = (8,415 \cdot 1 + 0,45 \cdot 1) / 3600 = 0,0024625 \ z/c;
M^{X-10..-15^{\circ}C}_{I} = 0.66 \cdot 20 + 2.9 \cdot 0.05 + 0.35 \cdot 1 = 13.695 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 2 \cdot 0.05 + 0.35 \cdot 1 = 0.45 \text{ z};
M^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (13,695 + 0,45) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0008487 \text{ m/zoo};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (13,695 \cdot 1 + 0,45 \cdot 1) / 3600 = 0,0039292 \ z/c;
\mathbf{M}^{\text{X}-15..-20^{\circ}\text{C}}_{I} = 0.66 \cdot 25 + 2.9 \cdot 0.05 + 0.35 \cdot 1 = 16.995 \, \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

 $\mathbf{M}^{X}_{330} = (0.184 + 0.015) \cdot 90 \cdot 2 \cdot 10^{-6} = 0.0000358 \text{ m/zod};$ $\mathbf{G}^{X}_{330} = (0.184 \cdot 1 + 0.015 \cdot 1) / 3600 = 0.0000553 \text{ z/c};$ $\mathbf{M}^{X-10..-15^{\circ}C}_{I} = 0.014 \cdot 20 + 0.1 \cdot 0.05 + 0.011 \cdot 1 = 0.296 \text{ z};$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{2} = 0.08 \cdot 0.05 + 0.011 \cdot 1 = 0.015 \ \epsilon;$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

```
\begin{array}{l} \textbf{\textit{M}}^{\text{X}-15...20^{\circ}\text{C}}{}_{2} = 2 \cdot 0.05 + 0.35 \cdot 1 = 0.45 \ z; \\ \textbf{\textit{M}}^{\text{X}-15...20^{\circ}\text{C}}{}_{2704} = (16.995 + 0.45) \cdot 4 \cdot 2 \cdot 10^{-6} = 0.0001396 \ \textit{\textit{m/zoo}}; \\ \textbf{\textit{G}}^{\text{X}-15...20^{\circ}\text{C}}{}_{2704} = (16.995 \cdot 1 + 0.45 \cdot 1) \ / \ 3600 = 0.0048458 \ \textit{z/c}; \\ \textbf{\textit{M}} = 0.0009576 + 0.0005393 + 0.0015957 + 0.0008487 + 0.0001396 = 0.0040809 \ \textit{\textit{m/zoo}}; \\ \textbf{\textit{G}} = \max\{0.0007389; \ 0.0012485; \ 0.0024625; \ 0.0039292; \ 0.0048458\} = 0.0048458 \ \textit{z/c}. \end{array}
```

Из результатов расчётов максимально разового выброса для каждого типа автотранспортных средств в итоговые результаты по источнику занесены наибольшие значения, полученные с учетом неодновременности и нестационарности во времени движения автотранспортных средств.

1.1 1.1 Площадка хранения песка (ИЗА №6507)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2005.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон ($K_4 = 1$). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0 ($K_3 = 1$); 0 ($K_3 = 1$)

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
2907	Пыль неорганическая, содержащая	0,0166667	8,050608
	двуокись кремния более 70%		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

	_	Одновр
Материал	Параметры	еменно
		СТЬ
Песок	Количество перерабатываемого материала: Gч = 1	+
	т/час; Gгод = 111814 т/год. Весовая доля пылевой	
	фракции в материале: \pmb{K}_1 = 0,05. Доля пыли,	
	переходящая в аэрозоль: \mathbf{K}_2 = 0,03. Влажность 0-0,5%	
	($K_5 = 1$). Размер куска 500 мм и более ($K_7 = 0,1$).	

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Песок

Согласовано

읟

Подпись и дата

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

1.1 1.1 Площадка хранения ПГС (ИЗА №6508)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2005.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия – склады, хранилища, открытые с 4-х сторон ($K_4 = 1$). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0 ($K_3 = 1$); 0 ($K_3 = 1$)

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
2907	Пыль неорганическая, содержащая	0,012	0,594674
	двуокись кремния более 70%		
2908	Пыль неорганическая, содержащая 70-	0,028	1,387572
	20% двуокиси кремния		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал	Параметры	Одновр еменно
		СТЬ
Песчано-гравийная (ПГС)	Количество перерабатываемого материала: Gч = 3 т/час; Gгод = 34414 т/год. Весовая доля пылевой фракции в материале: \mathbf{K}_1 = 0,03. Доля пыли, переходящая в аэрозоль: \mathbf{K}_2 = 0,04. Влажность 0-0,5%	
	(K ₅ = 1). Размер куска 500 мм и более (K ₇ = 0,1).	

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Песчано-гравийная смесь (ПГС)

Согласовано

읟

Взам. инв.

Подпись и дата

```
\begin{array}{l} \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.3 = 0.012 \ z/c; \\ \overline{\boldsymbol{M}_{2907}}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1.1 \cdot
```

$$M_{2908}{}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.7 = 0.028 \text{ z/c};$$

 $M_{2908}{}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.7 = 0.028 \text{ z/c};$
 $M_{2908}{}^{0 \text{ M/c}} = 0.03 \cdot 0.04 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 3 \cdot 10^{6} / 3600 \cdot 0.7 = 0.028 \text{ z/c};$

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

97

Наименование

Проезд ж/д транспорта

участка:

Согласовано

읟

Инв. № подл

№ источника:

6509

Итоговые результаты расчета выбросов:

Код	Название вещества	Количество ЗВ		
Код	пазвание вещества	г/с	т/год	
030	Азота диоксид (Азот (IV) оксид)	0,01768	0,00636	
1		54	6	
030	Apar (II) ayayy (Apara ayayy)	0,00287	0,00103	
4	Азот (II) оксид (Азота оксид)	39	5	
032	Vryanay (Caya)	0,05725	0,02061	
8	Углерод (Сажа)	66	2	
033	Сера диоксид (Ангидрид сернистый)	0,00905	0,00113	
0		00	7	
033	Variable	0,00114	0,00041	
7	Углерод оксид	82	3	
273	Керосин	0,03010	0,00568	
2		00	7	

^{* -} В соответствии с рекомендациями п. 2.2.5. [8], «...Коэффициенты трансформации в общем случае принимаются на уровне максимальной трансформации, т.е. $0.8 - \partial$ ля NO2 и $0.13 - \partial$ ля NO om NOx».

Расчёт выброса загрязняющих веществ:

N	Наименование исходных данных	Условны е обозначе ния	Ед. изм.	Величи на	Примечан ие
1	Суммарное время работы тепловоза	T'	час	10	
2	Коэффициент влияния технического состояния тепловоза	Kf		1,2	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), п.8.2.1
3	Коэффициент влияния климатических условий работы тепловоза	Kt		1	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

					(расчетным методом), п.8.2.1
4	Коэффициент использования тепловоза	Kn		0,7	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), п.8.2.3
5	Рабочий объем двигателя тепловоза	V		70	
6	Максимальная мощность, развиваемая двигателем тепловоза	N		100	
7	Продолжительность производственного цикла	Тц		2	
8	Коэффициент двадцатиминутного осреднения	L		0,1	L=Тц/20
9	Годовой расход топлива	В	кг/год	100	
10	Доля работы двигателя на холостом ходу	α		0,687	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), табл. 8.2.5

Код	Наименование загрязняющего вещества	холост ой ход	25 % Ne	50% Ne	75% Ne	максим мощнос ть	Примечан ие
	Оксиды азота	0,84	0,92	1,36	2,09	4,13	Методика проведения инвентаризации выбросов
032 8	Углерод (Сажа)	4,11	9,86	11,37	13,04	15,21	загрязняющих веществ в атмосферу на предприятиях
033 7	Углерод оксид	0,02	0,06	0,18	0,29	0,38	предприятиях железнодорожного транспорта (расчетным методом), табл. 8.2.4

Удельные показатели для расчет максимально-разового выброса

l						
l	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

Взам. инв. №

Подпись и дата

Лист

273	Наименование загрязняющего вещества	Без нагрузки на холостом ходу, г/литр рабочего объема в сек	С нагрузкой, г/кВт в сек	Примечание	
	Сера диоксид (Ангидрид сернистый)	0,00015	0,0008	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного	
273 2	Керосин	0,0007	0,0036	транспорта (расчетным методом), табл. 5.13.1.	

Удельные показатели для расчета валового выброса

Код	Наименование загрязняющего вещества	Без нагрузки на холостом ходу, г/кг топлива	С нагрузкой, г/кг топлива в сек	Примечание	
033	Сера диоксид (Ангидрид сернистый)	12	10	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного	
273 2	Керосин	60	50	транспорта (расчетным методом), табл. 5.13.1.	

Процентное распределение времени работы на различных нагрузочных режимах

	Тип тепловоза						
№п п		холост ой ход	25 % Ne	50% Ne	75% Ne	максим мощнос ть	Примечан ие
1.	ТЭМ7	0,687	0,20	0,089	0,015	0,008	Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), табл. 8.2.5

Расчётные формулы:

<u>для оксидов азота, углерода (сажи), углерода оксида</u> (Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), раздел 8.2)

$$M_{ij} = \sum_{k=1}^{n} g_{ijk} \cdot \tau_k \cdot T' \cdot K_f \cdot K_t \cdot K_n / 1000 m / 200$$

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

9035.1 – ПМООС 3

Лист

100

K8=0,65/(l(2/3)+1.8)

$$M_{ij} = \sum_{k=1}^{n} g_{ijk} \cdot \tau_k \cdot K_f \cdot K_t \cdot K_n \cdot L/3.6, \varepsilon/c$$

<u>для углеводородов, оксидов серы</u> (Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом), раздел 5.13)

$$G_{ixx}^o = q_{ixx}^0 \cdot V_n \cdot L, \mathcal{E}/c$$
 - в режиме холостого хода $G_{in}^o = q_{in}^0 \cdot N_{-M} \cdot L, \mathcal{E}/c$ - при работе с - при работе с нагрузкой $M_i = \frac{C_i \cdot B \cdot \alpha + C_i'(1-\alpha) \cdot B}{10^6}, m/200$

Результаты расчетов:

Оксиды азота

Мз	(0.84*0.687+0.92*0.201+1.36*0.089+2.09*0.015+4.13*0.008)*10*1.2*1*0.7/	$_{ m T}/_{ m \Gamma}$
$_{\mathbf{B}}=$	1000=0,007958	од
Gзв	(0,84*0,687+0,92*0,201+1,36*0,089+2,09*0,015+4,13*0,008)*1,2*1*0,7*0,1/2*1*0,000*1,000*1,000*1	г/се
=	3,6=0,0221067	К

032 Углерод (Сажа)

8

Согласовано

읟

Подпись и дата

Инв. № подл

M3 (4,11*0,687+9,86*0,201+11,37*0,089+13,04*0,015+15,21*0,008)*10*1,2*1* $_{\text{T/}\Gamma}$ $_{\text{B}}=$ 0,7/1000=0,051531 $_{\text{ОЗВ}}$ (4,11*0,687+9,86*0,201+11,37*0,089+13,04*0,015+15,21*0,008) * 1,2 $_{\text{Г/}\text{Ce}}=$ * 1*0,7*0,1/3,6=0,1431416

033 Углерод оксид

7

M3 (0,02*0,687+0,06*0,201+0,18*0,089+0,29*0,015+0,38*0,008)*10* T/Γ B= 1,2*1*0,7/1000=0,000413 OA $C_{3B} (0,02*0,687+0,06*0,201+0,18*0,089+0,29*0,015+0,38*0,008)*1,2* <math>T/C_{3B} = 1*0,7*0,1/3,6=0,0011482$

033 Сера диоксид (Ангидрид сернистый)

0

G3в =0,00015*70*0,1=0,00105 г/с без нагрузки на холостом ходу G3в =0,0008*100*0,1=0,008 г/с с нагрузкой при максимальной мощности

Изм. Кол.уч. Лист № док. Подпись Дата

9035.1 – ПМООС 3

Лист

101

```
Gобщ. =0,00105+0,008=0,00905 г/с  {\rm M3B} = (12*100*0,687+10*100*0,313)/10(-6)=0,001137 \ {\rm T/год}
```

273 Керосин

2

G3В =0,0007*70*0,1=0,0049 г/с без нагрузки на холостом ходу G3В =0,0036*70*0,1=0,0252 г/с с нагрузкой при максимальной

мощности

Gобщ. =0,0049+0,008=0,0301 Γ/c

 $M_{3B} = (60*100*0,687+50*100*0,313)/10(-6)=0,005687$ т/год

1.1 1.1 Бетонно-растворный узел (ИЗА №6510)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2005.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон ($K_4 = 1$). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала отсутствует ($K_9 = 1$). Расчетные скорости ветра, м/с: 0 ($K_3 = 1$); 0 ($K_3 = 1$). Средняя годовая скорость ветра 3,6 м/с ($K_3 = 1,2$).

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
2908	Пыль неорганическая, содержащая	0,4	1,728
	70-20% двуокиси кремния		

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

Материал		Одновр	
Материал	Параметры		
		СТЬ	
Цемент	Количество перерабатываемого материала: Gч = 30	+	
	т/час; Gгод = 30000 т/год. Весовая доля пылевой		
	фракции в материале: K_1 = 0,04. Доля пыли,		
	переходящая в аэрозоль: \mathbf{K}_2 = 0,03. Влажность 0-0,5%		
	($K_5 = 1$). Размер куска 500 мм и более ($K_7 = 0,1$).		

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Цемент

Согласовано

읟

Подпись и дата

```
\overline{\boldsymbol{M}_{2908}}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30 \cdot 10^{6} / 3600 = 0.4 \text{ z/c}; \\
\boldsymbol{M}_{2908}^{0 \text{ M/c}} = 0.04 \cdot 0.03 \cdot 1.2 \cdot 1 \cdot 1 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 30000 = 1.728 \text{ m/zoo}.
```

	M_{2908}^{0}	0 M/c = 0 0.04	,04 · 0,0 · 0,03 ·	03 · 1 · 1 · 1,2 · 1 · 1	1 · 0,1 · 0,1 ·	· 1 · 1 · 0,4 · 30 · 10 ⁶ / 3600 = 0,4 г/с; · 1 · 1 · 0,4 · 30 · 10 ⁶ / 3600 = 0,4 г/с; 1 · 1 · 0,4 · 30000 = 1,728 m/год.	
						9035.1 – ПМООС 3	Лист
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата		102

Источниками выделений загрязняющих веществ являются двигатели дорожностроительных машин в период работы пускового двигателя, прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух, СПб., НИИ Атмосфера, 2005.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1998.
- Дополнения к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от дорожно-строительных машин, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,0362567	0,055785
304	Азот (II) оксид (Азота оксид)	0,0058917	0,009064
328	Углерод (Сажа)	0,0089746	0,010757
330	Сера диоксид (Ангидрид сернистый)	0,0060005	0,010210
337	Углерод оксид	0,2768219	0,3706
2732	Керосин	0,046209	0,059116

Расчет выполнен для стоянки дорожно-строительных машин (ДМ), хранящихся при температуре окружающей среды. Пробег ДМ при выезде составляет 0.015 км, при въезде – 0.015 км. Время работы двигателя на холостом ходу при выезде с территории стоянки – 1 мин, при возврате на неё – 1 мин. Количество дней для расчётного периода: теплого – 180, переходного – 60, холодного с температурой от - 10° C до - 10° C – 90, холодного с температурой от - 15° C до - 20° C – 4.

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Мак	симальное кол	ичество	дМ	Скор	Элек	Одно
Наименование	Тип ДМ		выезд/въезд	выезд	въезд	ость,	трост	врем
ДМ	тин дій	всего	в течение	за 1	за 1	км/ч	арте	енно
			суток	час	час	KIVIJ 4	р	СТЬ
Автобетононас	ДМ колесная,	2	2	1	1	10	+	+
oc Putzmeister	мощностью свыше 260							
BSF 47-5	кВт (355 л.с. и более)							
Автобетоносме	ДМ колесная,	8	7	1	1	10	+	+
ситель СБ-172	мощностью 161-260							
	кВт (219-354 л.с.)							
Автобетоносме	ДМ колесная,	4	4	1	1	10	+	+
ситель СБ-92-1А	мощностью 36-60 кВт							
	(49-82 л.с.)							
Прицати	yenopulie ofosusuei	מ מעד	аспетиые фог	MVIILI	а так	nico n	асцети	11.10

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

						Γ
						l
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	

Согласовано

Подпись и дата

Выбросы i-го вещества одной машиной k-й группы в день при выезде с территории M'_{ik} и возврате M''_{ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M'}_{ik} = \mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi} + \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{\Pi B ik} \cdot \mathbf{t}_{\Pi B I} + \mathbf{m}_{XX ik} \cdot \mathbf{t}_{XX I}, z \tag{1.1.1}$$

$$M''_{ik} = m_{JB\ ik} \cdot t_{JB\ 2} + m_{XX\ ik} \cdot t_{XX\ 2}, 2 \tag{1.1.2}$$

где $m_{\Pi ik}$ – удельный выброс *i*-го вещества пусковым двигателем, *г*/мин;

 $m_{\Pi P \ ik}$ — удельный выброс i-го вещества при прогреве двигателя машины k-й группы, z/мин; $m_{\mathcal{J}B \ ik}$ — удельный выброс i-го вещества при движении машины k-й группы с условно постоянной скоростью, z/мин;

 $m_{XX\ ik}$ — удельный выброс **i**-го вещества при работе двигателя машины **k**-й группы на холостом ходу, ε/muh ;

 $t_{\Pi}, t_{\Pi P}$ - время работы пускового двигателя и прогрева двигателя, *мин*;

 $t_{\it ДВ~1}, t_{\it ДВ~2}$ - время движения машины при выезде и возврате рассчитывается из отношения средней скорости движения и длины проезда, *мин*;

 t_{XXI}, t_{XX2} - время работы двигателя на холостом ходу при выезде и возврате, мин;

При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член $\mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi}$ из формулы (1.1.1) исключается.

Валовый выброс i-го вещества ДМ рассчитывается раздельно для каждого периода года по формуле (1.1.3):

$$\mathbf{M}^{i}_{i} = \sum_{k=1}^{k} (\mathbf{M'}_{ik} + \mathbf{M''}_{ik}) \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, \, m/200$$
 (1.1.3)

где N_k – среднее количество ДМ κ -й группы, ежедневно выходящих на линию;

 D_P - количество рабочих дней в расчетном периоде (холодном, теплом, переходном);

j – период года (T - теплый, Π - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ для машин, хранящихся на закрытой отапливаемой стоянке не учитывается.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.3):

$$M_i = M_i^T + M_i^T + M_i^X, m/200$$
 (1.1.3)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$G_{i} = \sum_{k=1}^{k} (M'_{ik} \cdot N'_{k} + M''_{ik} \cdot N''_{k}) / 3600, z/c$$
 (1.1.2)

где N'_k , N''_k — количество машин k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) ДМ. Из полученных значений G_i выбирается максимальное с учетом одновременности движения ДМ разных групп.

Удельные выбросы загрязняющих веществ при работе пускового двигателя, прогреве, пробеге, на холостом ходу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ, г/мин

	Пуск	Прогрев			Ді	Холос					
Загрязняющее вещество		_	п	Х	т	П	V	той			
		•			•	11	_ ^	ход			
ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)											
Азота диоксид (Азот (IV) оксид)	5,6	1,6	2,4	2,4	8,128	8,128	8,128	1,592			
Азот (II) оксид (Азота оксид)	0,91	0,26	0,39	0,39	1,321	1,321	1,321	0,258			
								7			
	олесная, мощностью свыше 260 кВт Азота диоксид (Азот (IV) оксид)	олесная, мощностью свыше 260 кВт (355 л Азота диоксид (Азот (IV) оксид) 5,6	Загрязняющее вещество Пуск Т олесная, мощностью свыше 260 кВт (355 л.с. и бо Азота диоксид (Азот (IV) оксид) 5,6 1,6	Загрязняющее вещество Пуск Т П олесная, мощностью свыше 260 кВт (355 л.с. и более) Азота диоксид (Азот (IV) оксид) 5,6 1,6 2,4	Загрязняющее вещество Пуск Т П X олесная, мощностью свыше 260 кВт (355 л.с. и более) Азота диоксид (Азот (IV) оксид) 5,6 1,6 2,4 2,4	Загрязняющее вещество Пуск Т П X Т олесная, мощностью свыше 260 кВт (355 л.с. и более) Азота диоксид (Азот (IV) оксид) 5,6 1,6 2,4 2,4 8,128	Загрязняющее вещество Пуск Т П X Т П олесная, мощностью свыше 260 кВт (355 л.с. и более) Азота диоксид (Азот (IV) оксид) 5,6 1,6 2,4 2,4 8,128 8,128	Загрязняющее вещество Пуск Т П X Т П X олесная, мощностью свыше 260 кВт (355 л.с. и более) Азота диоксид (Азот (IV) оксид) 5,6 1,6 2,4 2,4 8,128 8,128 8,128			

Изм. Кол.уч. Лист № док. Подпись Дата

Согласовано

읟

Подпись и дата

Инв. № подл

9035.1 – ПМООС 3

Лист

			Прогрев			Движение			Холос
Тип	Загрязняющее вещество	Пуск	Т	П	Х	Т	П	Х	той ход
	Углерод (Сажа)	-	0,26	1,404	1,56	1,13	1,53	1,7	0,26
	Сера диоксид (Ангидрид сернистый)	0,15	0,26	0,288	0,32	0,8	0,882	0,98	0,39
	Углерод оксид	90	9,9	16,92	18,8	5,3	5,823	6,47	9,92
	Бензин (нефтяной, малосернистый)	7,5	-	-	-	-	-	-	-
	Керосин	-	1,24	2,898	3,22	1,79	1,935	2,15	1,24
ДМ к	олесная, мощностью 161-260 кВт (2	19-354	л.с.)						
	Азота диоксид (Азот (IV) оксид)	3,6	1,016	1,528	1,528	5,176	5,176	5,176	1,016
	Азот (II) оксид (Азота оксид)	0,585	0,165	0,248	0,248	0,841	0,841	0,841	0,165
	Углерод (Сажа)	-	0,17	0,918	1,02	0,72	0,972	1,08	0,17
	Сера диоксид (Ангидрид сернистый)	0,095	0,25	0,279	0,31	0,51	0,567	0,63	0,25
	Углерод оксид	57	6,3	11,34	12,6	3,37	3,699	4,11	6,31
	Бензин (нефтяной, малосернистый)	4,7	-	-	ı	ı	-	-	-
	Керосин	-	0,79	1,845	2,05	1,14	1,233	1,37	0,79
ДМ к	олесная, мощностью 36-60 кВт (49-8	32 л.с.)							
	Азота диоксид (Азот (IV) оксид)	0,96	0,232	0,352	0,352	1,192	1,192	1,192	0,232
	Азот (II) оксид (Азота оксид)	0,156	0,037	0,057	0,057	0,193	0,193	· ·	0,037
			7	2	2	7	7	7	7
	Углерод (Сажа)	-	0,04	0,216		0,17	0,225		0,04
	Сера диоксид (Ангидрид сернистый)	0,029	0,058	0,064 8	0,072	0,12	0,135	0,15	0,058
	Углерод оксид	23,3	1,4	2,52	2,8	0,77	0,846	0,94	1,44
	Бензин (нефтяной,	5,8	-	-	-	-	-	-	-
	малосернистый)								
	Керосин	-	0,18	0,423	0,47	0,26	0,279	0,31	0,18

Время работы пускового двигателя в зависимости от расчетного периода приведено в таблице 1.1.4.

Таблица 1.1.4 - Время работы пускового двигателя, мин

Согласовано

Tur renewus erneure rueğ weyyuyu	Время					
Тип дорожно-строительной машины	Т	П	Х			
ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)	1	2	4			
ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	1	2	4			
ДМ колесная, мощностью 36-60 кВт (49-82 л.с.)	1	2	4			

Время прогрева двигателей в зависимости от температуры воздуха и условий хранения приведено в таблице 1.1.5.

	T. ~	1	1.5				
	Табл	ица 1	.1.5 -	время і	прогр	ева двигателей, мин	
						2027.4 777.50.0.0.0	Лист
						9035.1 – ПМООС 3	
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата		105
					-		

106

	Время прогрева при температуре							
			ВО3,	духа, г	ИИН			
Тип дорожно-строительной машины	выш	+5	-5	-10	-15	-20	ниже	
	e +5°C	-5°C	-10°C	-15°C	-20°C	25°C	-25°C	
ДМ колесная, мощностью свыше 260 кВт (355 л.с.	2	6	12	20	28	36	45	
и более)								
ДМ колесная, мощностью 161-260 кВт (219-354	2	6	12	20	28	36	45	
л.с.)								
ДМ колесная, мощностью 36-60 кВт (49-82 л.с.)	2	6	12	20	28	36	45	

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

```
<u>Автобетононасос Putzmeister BSF 47-5</u> M'^{T}_{301} = 1,6 \cdot 2 + 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 6,25504 \ z;
```

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

```
M''^{T}_{301} = 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 3,05504 c;
M^{\mathrm{T}}_{301} = (6,25504 + 3,05504) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0033516 \,\text{m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (6,25504 \cdot 1 + 3,05504 \cdot 1) / 3600 = 0,0025861 \, \text{z/c};
M'^{\Pi}_{30I} = 2,4 \cdot 6 + 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 17,45504 \, \varepsilon;
M^{\prime\prime}^{\Pi}_{301} = 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 3,05504 \, \epsilon;
M^{\Pi}_{30I} = (17,45504 + 3,05504) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0024612 \text{ m/zod};
\mathbf{G}^{\Pi}_{30I} = (17,45504 \cdot 1 + 3,05504 \cdot 1) / 3600 = 0,0056972 \, \epsilon/c;
M'^{X}_{301} = 2.4 \cdot 12 + 8.128 \cdot 0.015 / 5 \cdot 60 + 1.592 \cdot 1 = 31.85504 c;
M''^{X}_{301} = 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 3,05504 \, \epsilon;
M^{X}_{30I} = (31,85504 + 3,05504) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0062838 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (31,85504 \cdot 1 + 3,05504 \cdot 1) / 3600 = 0,0096972 \ z/c;
M'^{X-10..-15^{\circ}C}_{301} = 2,4 \cdot 20 + 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 51,05504 z;
M''^{X-10..-15^{\circ}C}_{301} = 8{,}128 \cdot 0{,}015 / 5 \cdot 60 + 1{,}592 \cdot 1 = 3{,}05504 c;
M^{X-10..-15^{\circ}C}_{301} = (51,05504 + 3,05504) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0032466 \text{ m/200};
G^{X-10..-15^{\circ}C}_{301} = (51,05504 \cdot 1 + 3,05504 \cdot 1) / 3600 = 0,0150306 \ z/c;
M'^{\text{X-15..-20°C}}_{30I} = 2,4 \cdot 28 + 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 70,25504 \, \epsilon;
M''^{X-15..-20^{\circ}C}_{30I} = 8,128 \cdot 0,015 / 5 \cdot 60 + 1,592 \cdot 1 = 3,05504 c;
M^{\text{X-15...20°C}}_{301} = (70,25504 + 3,05504) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0005865 \text{ m/200};
G_{301} = (70.25504 \cdot 1 + 3.05504 \cdot 1) / 3600 = 0.0203639 \ z/c;
M = 0.0033516 + 0.0024612 + 0.0062838 + 0.0032466 + 0.0005865 = 0.0159297  m/200;
G = \max\{0.0025861; 0.0056972; 0.0096972; 0.0150306; 0.0203639\} = 0.0203639 \ \epsilon/c.
M'^{\mathrm{T}}_{304} = 0.26 \cdot 2 + 1.321 \cdot 0.015 / 5 \cdot 60 + 0.2587 \cdot 1 = 1.01648 \, \varepsilon;
M''^{\mathrm{T}}_{304} = 1,321 \cdot 0,015 / 5 \cdot 60 + 0,2587 \cdot 1 = 0,49648 \, \varepsilon;
M^{T}_{304} = (1.01648 + 0.49648) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0005447 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (1,01648 \cdot 1 + 0,49648 \cdot 1) / 3600 = 0,0004203 \, z/c;
M'^{\Pi}_{304} = 0.39 \cdot 6 + 1.321 \cdot 0.015 / 5 \cdot 60 + 0.2587 \cdot 1 = 2.83648 c;
M''^{\Pi}_{304} = 1,321 \cdot 0,015 / 5 \cdot 60 + 0,2587 \cdot 1 = 0,49648 \ \epsilon;
M^{\Pi}_{304} = (2.83648 + 0.49648) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0004 \, \text{m/zod};
\mathbf{G}^{\Pi_{304}} = (2.83648 \cdot 1 + 0.49648 \cdot 1) / 3600 = 0.0009258 \, c/c;
M'^{X}_{304} = 0.39 \cdot 12 + 1.321 \cdot 0.015 / 5 \cdot 60 + 0.2587 \cdot 1 = 5.17648 c;
M''^{X}_{304} = 1,321 \cdot 0,015 / 5 \cdot 60 + 0,2587 \cdot 1 = 0,49648 \ \epsilon;
M^{X}_{304} = (5,17648 + 0,49648) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0010211 \text{ m/zod};
\mathbf{G}^{X}_{304} = (5,17648 \cdot 1 + 0,49648 \cdot 1) / 3600 = 0,0015758 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.39 \cdot 20 + 1.321 \cdot 0.015 / 5 \cdot 60 + 0.2587 \cdot 1 = 8.29648 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{304} = 1,321 \cdot 0,015 / 5 \cdot 60 + 0,2587 \cdot 1 = 0,49648 \ \varepsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (8,29648 + 0,49648) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0005276 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

107

```
M = 0.0005447 + 0.0004 + 0.0010211 + 0.0005276 + 0.0000953 = 0.0025886 \, \text{m/zod};
G = \max\{0.0004203; 0.0009258; 0.0015758; 0.0024425; 0.0033092\} = 0.0033092 \ \epsilon/c.
M'^{\mathrm{T}}_{328} = 0.26 \cdot 2 + 1.13 \cdot 0.015 / 5 \cdot 60 + 0.26 \cdot 1 = 0.9834 \, \varepsilon;
M''^{T}_{328} = 1,13 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 0,4634 c;
M^{T}_{328} = (0.9834 + 0.4634) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0005208 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{328} = (0.9834 \cdot 1 + 0.4634 \cdot 1) / 3600 = 0.0004019 \ z/c;
M^{\prime \Pi}_{328} = 1,404 \cdot 6 + 1,53 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 8,9594 z;
M''^{\Pi}_{328} = 1.13 \cdot 0.015 / 5 \cdot 60 + 0.26 \cdot 1 = 0.4634 \, \epsilon;
M^{\Pi}_{328} = (8,9594 + 0,4634) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0011307 \text{ m/sod};
\mathbf{G}^{\Pi}_{328} = (8,9594 \cdot 1 + 0,4634 \cdot 1) / 3600 = 0,0026174 \, z/c;
M'^{X}_{328} = 1,56 \cdot 12 + 1,7 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 19,286 c;
M''^{X}_{328} = 1.13 \cdot 0.015 / 5 \cdot 60 + 0.26 \cdot 1 = 0.4634 z;
M^{X}_{328} = (19,286 + 0,4634) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0035549 \text{ m/zod};
M'^{X-10...15^{\circ}C}_{328} = 1,56 \cdot 20 + 1,7 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 31,766 c;
M''^{X-10..-15^{\circ}C}_{328} = 1,13 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 0,4634 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{328} = (31,766 + 0,4634) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0019338 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (31,766 \cdot 1 + 0,4634 \cdot 1) / 3600 = 0,0089526 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{328} = 1,56 \cdot 28 + 1,7 \cdot 0,015 / 5 \cdot 60 + 0,26 \cdot 1 = 44,246 \ \varepsilon;
M''^{X-15...-20^{\circ}C}_{328} = 1{,}13 \cdot 0{,}015 / 5 \cdot 60 + 0{,}26 \cdot 1 = 0{,}4634 z;
M^{X-15...20^{\circ}C}_{328} = (44,246+0,4634) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0003577 \text{ m/zod};
G_{328} = (44,246 \cdot 1 + 0,4634 \cdot 1) / 3600 = 0,0124193 \ z/c;
M = 0.0005208 + 0.0011307 + 0.0035549 + 0.0019338 + 0.0003577 = 0.0074979  m/200;
G = \max\{0,0004019; 0,0026174; 0,0054859; 0,0089526; 0,0124193\} = 0,0124193 \ \epsilon/c.
M'^{\mathrm{T}}_{330} = 0.26 \cdot 2 + 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 1.054 \, \epsilon;
M''^{T}_{330} = 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 0.534 c;
M^{T}_{330} = (1,054 + 0,534) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0005717 \text{ m/zod};
G^{T}_{330} = (1,054 \cdot 1 + 0,534 \cdot 1) / 3600 = 0,0004411 \ z/c;
M'^{\Pi}_{330} = 0.288 \cdot 6 + 0.882 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 2.27676 c;
M^{\prime\prime}\Pi_{330} = 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 0.534 z;
M^{\Pi}_{330} = (2.27676 + 0.534) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0003373 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,27676 \cdot 1 + 0,534 \cdot 1) / 3600 = 0,0007808 \, \epsilon/c;
M'^{X}_{330} = 0.32 \cdot 12 + 0.98 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 4.4064 z;
M''^{X}_{330} = 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 0.534 z;
M^{X}_{330} = (4,4064 + 0,534) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0008893 \text{ m/zod};
G^{X}_{330} = (4,4064 \cdot 1 + 0,534 \cdot 1) / 3600 = 0,0013723 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.32 \cdot 20 + 0.98 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 6.9664 \text{ z};
M''^{X-10..-15^{\circ}C}_{330} = 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 0.534 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (6,9664 + 0,534) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,00045 \text{ m/cod};
G^{\text{X-10..-15}\circ\text{C}}_{330} = (6,9664 \cdot 1 + 0,534 \cdot 1) / 3600 = 0,0020834 \ z/c;
M'^{\text{X-15..-20}^{\circ}\text{C}}_{330} = 0.32 \cdot 28 + 0.98 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 9.5264 \text{ c};
M''^{X-15...-20^{\circ}C}_{330} = 0.8 \cdot 0.015 / 5 \cdot 60 + 0.39 \cdot 1 = 0.534 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{330} = (9,5264 + 0,534) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000805 \text{ m/zod};
G_{330} = (9,5264 \cdot 1 + 0,534 \cdot 1) / 3600 = 0,0027946 \ e/c;
M = 0.0005717 + 0.0003373 + 0.0008893 + 0.00045 + 0.0000805 = 0.0023288  m/200;
G = \max\{0.0004411; 0.0007808; 0.0013723; 0.0020834; 0.0027946\} = 0.0027946 \ \epsilon/c.
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $G^{X-10..-15^{\circ}C}_{304} = (8,29648 \cdot 1 + 0,49648 \cdot 1) / 3600 = 0,0024425 \ z/c;$

 $M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (11,41648 + 0,49648) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0000953 \text{ m/zod};$

 $M''^{X-15..-20^{\circ}C}_{304} = 1,321 \cdot 0,015 / 5 \cdot 60 + 0,2587 \cdot 1 = 0,49648 c;$

 $G_{304} = (11,41648 \cdot 1 + 0,49648 \cdot 1) / 3600 = 0,0033092 \ z/c;$

 $M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.39 \cdot 28 + 1.321 \cdot 0.015 / 5 \cdot 60 + 0.2587 \cdot 1 = 11.41648 \ \epsilon;$

108

```
M^{T}_{337} = (30,674 + 10,874) \cdot 180 \cdot 2 \cdot 10^{-6} = 0,0149573 \text{ m/zod};
G^{T}_{337} = (30.674 \cdot 1 + 10.874 \cdot 1) / 3600 = 0.0115411 \ z/c;
M'^{\Pi}_{337} = 16.92 \cdot 6 + 5.823 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 112.48814 z;
M''^{\Pi}_{337} = 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 10.874 c;
M^{\Pi}_{337} = (112,48814 + 10,874) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0148035 \, \text{m/zod};
\mathbf{G}^{\Pi}_{337} = (112.48814 \cdot 1 + 10.874 \cdot 1) / 3600 = 0.0342673 \, z/c;
M'^{X}_{337} = 18.8 \cdot 12 + 6.47 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 236.6846 z;
M''^{X}_{337} = 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 10.874 z;
M^{X}_{337} = (236,6846 + 10,874) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0445605 \, \text{m/zod};
G^{X}_{337} = (236,6846 \cdot 1 + 10,874 \cdot 1) / 3600 = 0,0687663 \, z/c;
M'^{X-10..-15^{\circ}C}_{337} = 18.8 \cdot 20 + 6.47 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 387,0846 z;
M''^{X-10..-15^{\circ}C}_{337} = 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 10.874 z;
M^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (387,0846 + 10,874) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0238775 \text{ m/200};
G^{X-10..-15^{\circ}C}_{337} = (387,0846 \cdot 1 + 10,874 \cdot 1) / 3600 = 0,1105441 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{337} = 18.8 \cdot 28 + 6.47 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 537.4846 \ \varepsilon;
M''^{X-15...-20^{\circ}C}_{337} = 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 10.874 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{337} = (537,4846 + 10,874) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0043869 \text{ m/200};
G_{337} = (537,4846 \cdot 1 + 10,874 \cdot 1) / 3600 = 0,1523218 \ z/c;
M = 0.0149573 + 0.0148035 + 0.0445605 + 0.0238775 + 0.0043869 = 0.1025857  m/200;
G = \max\{0.0115411; 0.0342673; 0.0687663; 0.1105441; 0.1523218\} = 0.1523218 \ \epsilon/c.
M'^{T}_{2704} = 0 \cdot 2 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{T}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 2 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
\mathbf{G}^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 2 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\text{X -}10..-15^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0,015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 2 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \frac{2}{c}
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 1,24 \cdot 2 + 1,79 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 4,0422 \ \varepsilon;
M''^{T}_{2732} = 1.79 \cdot 0.015 / 5 \cdot 60 + 1.24 \cdot 1 = 1.5622 z;
M^{T}_{2732} = (4.0422 + 1.5622) \cdot 180 \cdot 2 \cdot 10^{-6} = 0.0020176 \text{ m/zod};
G^{T}_{2732} = (4,0422 \cdot 1 + 1,5622 \cdot 1) / 3600 = 0,0015568 \, c/c;
M'^{\Pi}_{2732} = 2,898 \cdot 6 + 1,935 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 18,9763 \ \varepsilon;
M''^{\Pi}_{2732} = 1,79 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 1,5622 \ \epsilon;
M^{\Pi}_{2732} = (18.9763 + 1.5622) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0024646 \, \text{m/zod};
```

 $9035.1 - \Pi MOOC 3$

 $M'^{T}_{337} = 9.9 \cdot 2 + 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 30.674 z;$

 $M''^{T}_{337} = 5.3 \cdot 0.015 / 5 \cdot 60 + 9.92 \cdot 1 = 10.874 c;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

109

```
M^{X}_{2732} = (40,267 + 1,5622) \cdot 90 \cdot 2 \cdot 10^{-6} = 0,0075293 \text{ m/zod};
G^{X}_{2732} = (40,267 \cdot 1 + 1,5622 \cdot 1) / 3600 = 0,0116192 \ z/c;
M'^{X-10..-15^{\circ}C}_{2732} = 3,22 \cdot 20 + 2,15 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 66,027 c;
M''^{X-10..-15^{\circ}C}_{2732} = 1,79 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 1,5622 c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{2732} = (66,027 + 1,5622) \cdot 30 \cdot 2 \cdot 10^{-6} = 0,0040554 \,\text{m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2732} = (66,027 \cdot 1 + 1,5622 \cdot 1) / 3600 = 0,0187748 \ z/c;
M'^{\text{X-15...-20°C}}_{2732} = 3,22 \cdot 28 + 2,15 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 91,787 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,79 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 1,5622 c;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2732} = (91,787+1,5622) \cdot 4 \cdot 2 \cdot 10^{-6} = 0,0007468 \text{ m/zod};
G_{2732} = (91,787 \cdot 1 + 1,5622 \cdot 1) / 3600 = 0,0259303 \ z/c;
M = 0.0020176 + 0.0024646 + 0.0075293 + 0.0040554 + 0.0007468 = 0.0168136 \, \text{m/zod};
G = \max\{0.0015568; 0.0057051; 0.0116192; 0.0187748; 0.0259303\} = 0.0259303 \ c/c.
Автобетоносмеситель СБ-172
M'^{\mathrm{T}}_{301} = 1,016 \cdot 2 + 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 3,97968 \, \varepsilon;
M''^{\mathrm{T}}_{301} = 5{,}176 \cdot 0{,}015 / 5 \cdot 60 + 1{,}016 \cdot 1 = 1{,}94768 \ \varepsilon;
M^{T}_{301} = (3.97968 + 1.94768) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0074685 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (3.97968 \cdot 1 + 1.94768 \cdot 1) / 3600 = 0.0016465 \, z/c;
M'^{\Pi}_{30I} = 1,528 \cdot 6 + 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 11,11568 c;
M''^{\Pi}_{30I} = 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 1,94768 \, \epsilon;
\mathbf{M}^{\Pi_{30l}} = (11,11568 + 1,94768) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0054866 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (11,11568 \cdot 1 + 1,94768 \cdot 1) / 3600 = 0,0036287 \, \epsilon/c;
M'^{X}_{301} = 1,528 \cdot 12 + 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 20,28368 c;
M''^{X}_{301} = 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 1,94768 \ \epsilon;
M^{X}_{30I} = (20.28368 + 1.94768) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.0140058 \, \text{m/zod};
\mathbf{G}^{X}_{301} = (20,28368 \cdot 1 + 1,94768 \cdot 1) / 3600 = 0,0061754 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{301} = 1,528 \cdot 20 + 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 32,50768 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 1,94768 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{301} = (32,50768 + 1,94768) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0072356 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{30l} = (32,50768 \cdot 1 + 1,94768 \cdot 1) / 3600 = 0,0095709 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{30I} = 1,528 \cdot 28 + 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 44,73168 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{30I} = 5,176 \cdot 0,015 / 5 \cdot 60 + 1,016 \cdot 1 = 1,94768 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{30I} = (44,73168 + 1,94768) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,001307 \text{ m/zod};
G_{301} = (44,73168 \cdot 1 + 1,94768 \cdot 1) / 3600 = 0,0129665     z/c;
M = 0.0074685 + 0.0054866 + 0.0140058 + 0.0072356 + 0.001307 = 0.0355035  m/20\partial;
G = \max\{0.0016465; 0.0036287; 0.0061754; 0.0095709; 0.0129665\} = 0.0129665 \ c/c.
M'^{\mathrm{T}}_{304} = 0.165 \cdot 2 + 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.64638 \, \epsilon;
M''^{T}_{304} = 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.31638 \ \epsilon;
M^{\mathrm{T}}_{304} = (0.64638 + 0.31638) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0012131 \,\text{m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.64638 \cdot 1 + 0.31638 \cdot 1) / 3600 = 0.0002674 \, z/c;
M'^{\Pi}_{304} = 0.2483 \cdot 6 + 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 1.80618 z;
M''^{\Pi}_{304} = 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.31638 z;
M^{\Pi}_{304} = (1,80618 + 0,31638) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0008915 \text{ m/zod};
\mathbf{G}^{\Pi}_{304} = (1,80618 \cdot 1 + 0,31638 \cdot 1) / 3600 = 0,0005896 \, \epsilon/c;
M'^{X}_{304} = 0.2483 \cdot 12 + 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 3.29598 \ \varepsilon;
M''^{X}_{304} = 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.31638 z;
M^{X}_{304} = (3,29598 + 0,31638) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0022758 \text{ m/zod};
\mathbf{G}^{X}_{304} = (3.29598 \cdot 1 + 0.31638 \cdot 1) / 3600 = 0.0010034 \, \epsilon/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.2483 \cdot 20 + 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 5.28238 \ \epsilon;
```

 $9035.1 - \Pi MOOC 3$

 $G^{\Pi}_{2732} = (18,9763 \cdot 1 + 1,5622 \cdot 1) / 3600 = 0,0057051 \ \epsilon/c;$ $M'^{\chi}_{2732} = 3,22 \cdot 12 + 2,15 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 40,267 \ \epsilon;$

 $M''^{X}_{2732} = 1,79 \cdot 0,015 / 5 \cdot 60 + 1,24 \cdot 1 = 1,5622 \ \epsilon;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

110

```
G^{X-10..-15^{\circ}C}_{304} = (5,28238 \cdot 1 + 0,31638 \cdot 1) / 3600 = 0,0015552 \, z/c;
M'^{X-15..-20^{\circ}C}_{304} = 0.2483 \cdot 28 + 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 7.26878 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.31638 \, \varepsilon;
M^{\text{X-15..-20°C}}_{304} = (7,26878 + 0,31638) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0002124 \text{ m/zod};
G_{304} = (7,26878 \cdot 1 + 0,31638 \cdot 1) / 3600 = 0,002107 \ z/c;
M = 0.0012131 + 0.0008915 + 0.0022758 + 0.0011757 + 0.0002124 = 0.0057685  m/200;
G = \max\{0.0002674; 0.0005896; 0.0010034; 0.0015552; 0.002107\} = 0.002107 \ c/c.
M'^{T}_{328} = 0.17 \cdot 2 + 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.6396 c;
M''^{\mathrm{T}}_{328} = 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.2996 \ \epsilon;
M^{T}_{328} = (0.6396 + 0.2996) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0011834 \text{ m/zod};
M'^{\Pi}_{328} = 0.918 \cdot 6 + 0.972 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 5.85296 c;
M''^{\Pi}_{328} = 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.2996 \ \epsilon;
M^{\Pi}_{328} = (5.85296 + 0.2996) \cdot 60 \cdot 7 \cdot 10^{-6} = 0.0025841 \text{ m/zod};
\mathbf{G}^{\Pi}_{328} = (5.85296 \cdot 1 + 0.2996 \cdot 1) / 3600 = 0.001709 \, \epsilon/c;
M'^{X}_{328} = 1,02 \cdot 12 + 1,08 \cdot 0,015 / 5 \cdot 60 + 0,17 \cdot 1 = 12,6044 c;
M''^{X}_{328} = 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.2996 \ \epsilon;
M^{X}_{328} = (12,6044 + 0,2996) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,0081295 \text{ m/zod};
G^{X}_{328} = (12,6044 \cdot 1 + 0,2996 \cdot 1) / 3600 = 0,0035844 \, \epsilon/c;
M^{\prime X-10...15^{\circ}C}_{328} = 1,02 \cdot 20 + 1,08 \cdot 0,015 / 5 \cdot 60 + 0,17 \cdot 1 = 20,7644 c;
M''^{X-10..-15^{\circ}C}_{328} = 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.2996 c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{328} = (20,7644 + 0,2996) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0044234 \text{ m/cod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{328} = (20,7644 \cdot 1 + 0,2996 \cdot 1) / 3600 = 0,0058511 \ z/c;
M'^{\text{X-15..-20°C}}_{328} = 1,02 \cdot 28 + 1,08 \cdot 0,015 / 5 \cdot 60 + 0,17 \cdot 1 = 28,9244 c;
M''^{X-15...20^{\circ}C}_{328} = 0.72 \cdot 0.015 / 5 \cdot 60 + 0.17 \cdot 1 = 0.2996 \varepsilon;
M^{\text{X}-15...20^{\circ}\text{C}}_{328} = (28.9244 + 0.2996) \cdot 4 \cdot 7 \cdot 10^{-6} = 0.0008183 \text{ m/zod};
G_{328} = (28,9244 \cdot 1 + 0,2996 \cdot 1) / 3600 = 0,0081178 \, \epsilon/c;
M = 0.0011834 + 0.0025841 + 0.0081295 + 0.0044234 + 0.0008183 = 0.0171387 \text{ m/zod};
G = \max\{0.0002609; 0.001709; 0.0035844; 0.0058511; 0.0081178\} = 0.0081178 \ \epsilon/c.
M'^{T}_{330} = 0.25 \cdot 2 + 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.8418 z;
M''^{T}_{330} = 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.3418 \ \epsilon;
M^{T}_{330} = (0.8418 + 0.3418) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0014913 \text{ m/zod};
G^{T}_{330} = (0.8418 \cdot 1 + 0.3418 \cdot 1) / 3600 = 0.0003288 \ z/c;
M'^{\Pi}_{330} = 0.279 \cdot 6 + 0.567 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 2.02606 z;
M''^{\Pi}_{330} = 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.3418 \ \epsilon;
M^{\Pi}_{330} = (2.02606 + 0.3418) \cdot 60 \cdot 7 \cdot 10^{-6} = 0.0009945 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (2,02606 \cdot 1 + 0,3418 \cdot 1) / 3600 = 0,0006577 \, \epsilon/c;
M'^{X}_{330} = 0.31 \cdot 12 + 0.63 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 4.0834 z;
M''^{X}_{330} = 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.3418 z;
M^{X}_{330} = (4.0834 + 0.3418) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.0027879 \text{ m/zod};
G^{X}_{330} = (4,0834 \cdot 1 + 0,3418 \cdot 1) / 3600 = 0,0012292 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{330} = 0.31 \cdot 20 + 0.63 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 6.5634 \text{ z};
M''^{X-10..-15^{\circ}C}_{330} = 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.3418 \ \varepsilon;
M^{X-10..-15^{\circ}C}_{330} = (6,5634+0,3418) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0014501 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (6,5634 \cdot 1 + 0,3418 \cdot 1) / 3600 = 0,0019181 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0.31 \cdot 28 + 0.63 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 9.0434 c;
M''^{X-15...-20^{\circ}C}_{330} = 0.51 \cdot 0.015 / 5 \cdot 60 + 0.25 \cdot 1 = 0.3418 z;
M^{\text{X}-15...20^{\circ}\text{C}}_{330} = (9,0434 + 0,3418) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0002628 \text{ m/zod};
G_{330} = (9,0434 \cdot 1 + 0,3418 \cdot 1) / 3600 = 0,002607 \ z/c;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M''^{X-10..-15^{\circ}C}_{304} = 0.841 \cdot 0.015 / 5 \cdot 60 + 0.165 \cdot 1 = 0.31638 z;$

 $M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (5,28238 + 0,31638) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0011757 \text{ m/zod};$

111

```
M'^{\mathrm{T}}_{337} = 6.3 \cdot 2 + 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 19.5166 c;
M''^{T}_{337} = 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 6.9166 c;
M^{T}_{337} = (19.5166 + 6.9166) \cdot 180 \cdot 7 \cdot 10^{-6} = 0.0333058 \text{ m/zod};
G^{T}_{337} = (19.5166 \cdot 1 + 6.9166 \cdot 1) / 3600 = 0.0073426  z/c;
M'^{\Pi}_{337} = 11,34 \cdot 6 + 3,699 \cdot 0,015 / 5 \cdot 60 + 6,31 \cdot 1 = 75,01582 c;
M''^{\Pi}_{337} = 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 6.9166 c;
M^{\Pi}_{337} = (75,01582 + 6,9166) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0344116 \text{ m/200};
G^{\Pi}_{337} = (75,01582 \cdot 1 + 6,9166 \cdot 1) / 3600 = 0,022759 \ z/c;
M'^{X}_{337} = 12.6 \cdot 12 + 4.11 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 158.2498 c;
M''^{X}_{337} = 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 6.9166 c;
M^{X}_{337} = (158,2498 + 6,9166) \cdot 90 \cdot 7 \cdot 10^{-6} = 0,1040548 \, \text{m/zod};
M'^{X-10..-15^{\circ}C}_{337} = 12.6 \cdot 20 + 4.11 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 259.0498 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{337} = 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 6.9166 c;
M^{\text{X-10..-15}^{\circ}\text{C}}_{337} = (259,0498 + 6,9166) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0558529 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (259,0498 \cdot 1 + 6,9166 \cdot 1) / 3600 = 0,0738796 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 12.6 \cdot 28 + 4.11 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 359.8498 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{337} = 3.37 \cdot 0.015 / 5 \cdot 60 + 6.31 \cdot 1 = 6.9166 c;
M^{\text{X-15...20°C}}_{337} = (359,8498 + 6,9166) \cdot 4 \cdot 7 \cdot 10^{-6} = 0,0102695 \text{ m/zod};
G_{337} = (359.8498 \cdot 1 + 6.9166 \cdot 1) / 3600 = 0.1018796 \ z/c;
M = 0.0333058 + 0.0344116 + 0.1040548 + 0.0558529 + 0.0102695 = 0.2378947  m/200;
G = \max\{0.0073426; 0.022759; 0.0458796; 0.0738796; 0.1018796\} = 0.1018796 \ z/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 c;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 7 \cdot 10^{-6} = 0 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0,015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 7 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \epsilon/c;
M'^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 20 + 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{X-10..-15^{\circ}C}_{2704} = (0+0) \cdot 30 \cdot 7 \cdot 10^{-6} = 0 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,015 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15..-20^{\circ}C}_{2704} = 0 \cdot 0.015 / 5 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{2704} = (0+0) \cdot 4 \cdot 7 \cdot 10^{-6} = 0 \text{ m/200};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 c/c.
M'^{\mathrm{T}}_{2732} = 0.79 \cdot 2 + 1.14 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 2.5752 \, \epsilon;
M''^{T}_{2732} = 1.14 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 0.9952 z;
M^{T}_{2732} = (2,5752 + 0,9952) \cdot 180 \cdot 7 \cdot 10^{-6} = 0,0044987 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{2732} = (2,5752 \cdot 1 + 0,9952 \cdot 1) / 3600 = 0,0009918 \, \epsilon/c;
M'^{\Pi}_{2732} = 1.845 \cdot 6 + 1.233 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 12.08194 z;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

M = 0.0014913 + 0.0009945 + 0.0027879 + 0.0014501 + 0.0002628 = 0.0069866 m/200; $G = \max\{0.0003288; 0.0006577; 0.0012292; 0.0019181; 0.002607\} = 0.002607$ c/c.

112

```
\mathbf{G}^{\Pi}_{2732} = (12,08194 \cdot 1 + 0.9952 \cdot 1) / 3600 = 0.0036325 \, \epsilon/c;
M'^{X}_{2732} = 2,05 \cdot 12 + 1,37 \cdot 0,015 / 5 \cdot 60 + 0,79 \cdot 1 = 25,6366 c;
M''^{X}_{2732} = 1.14 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 0.9952 z;
M^{X}_{2732} = (25,6366 + 0.9952) \cdot 90 \cdot 7 \cdot 10^{-6} = 0.016778 \text{ m/zod};
\mathbf{G}^{X}_{2732} = (25,6366 \cdot 1 + 0.9952 \cdot 1) / 3600 = 0.0073977 \ z/c;
M'^{\text{X}-10..-15^{\circ}\text{C}}_{2732} = 2,05 \cdot 20 + 1,37 \cdot 0,015 / 5 \cdot 60 + 0,79 \cdot 1 = 42,0366 \ \varepsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 1,14 \cdot 0,015 / 5 \cdot 60 + 0,79 \cdot 1 = 0,9952 \ \varepsilon;
M^{\text{X-}10..-15^{\circ}\text{C}}_{2732} = (42,0366 + 0,9952) \cdot 30 \cdot 7 \cdot 10^{-6} = 0,0090367 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (42,0366 \cdot 1 + 0,9952 \cdot 1) / 3600 = 0,0119533 \ e/c;
M'^{X-15..-20^{\circ}C}_{2732} = 2.05 \cdot 28 + 1.37 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 58,4366 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 1,14 \cdot 0,015 / 5 \cdot 60 + 0,79 \cdot 1 = 0,9952 z;
M^{X-15..-20^{\circ}C}_{2732} = (58,4366+0.9952) \cdot 4 \cdot 7 \cdot 10^{-6} = 0.0016641 \text{ m/zod};
G_{2732} = (58,4366 \cdot 1 + 0.9952 \cdot 1) / 3600 = 0.0165088 \ z/c;
M = 0.0044987 + 0.0054924 + 0.016778 + 0.0090367 + 0.0016641 = 0.0374699  m/200;
G = \max\{0,0009918; 0,0036325; 0,0073977; 0,0119533; 0,0165088\} = 0,0165088 \ z/c.
Автобетоносмеситель СБ-92-1А
M'^{\mathrm{T}}_{301} = 0.232 \cdot 2 + 1.192 \cdot 0.015 / 10 \cdot 60 + 0.232 \cdot 1 = 0.80328 \, \epsilon;
M''^{T}_{301} = 1,192 \cdot 0,015 / 10 \cdot 60 + 0,232 \cdot 1 = 0,33928 \ \varepsilon;
M^{T}_{30I} = (0.80328 + 0.33928) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0008226 \,\text{m/zod};
\mathbf{G}^{\mathrm{T}}_{301} = (0.80328 \cdot 1 + 0.33928 \cdot 1) / 3600 = 0.0003174 \, z/c;
M'^{\Pi}_{30I} = 0.352 \cdot 6 + 1.192 \cdot 0.015 / 10 \cdot 60 + 0.232 \cdot 1 = 2.45128 z;
M''^{\Pi}_{30I} = 1,192 \cdot 0,015 / 10 \cdot 60 + 0,232 \cdot 1 = 0,33928 \ \epsilon;
M^{\Pi}_{30I} = (2,45128 + 0,33928) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0006697 \, \text{m/zod};
\mathbf{G}^{\Pi}_{301} = (2,45128 \cdot 1 + 0,33928 \cdot 1) / 3600 = 0,0007752 \, \epsilon/c;
M'^{X}_{301} = 0.352 \cdot 12 + 1.192 \cdot 0.015 / 10 \cdot 60 + 0.232 \cdot 1 = 4.56328 z;
M''^{X}_{301} = 1,192 \cdot 0,015 / 10 \cdot 60 + 0,232 \cdot 1 = 0,33928 \, \epsilon;
M^{X}_{301} = (4,56328 + 0,33928) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0017649 \text{ m/zod};
\mathbf{G}^{X}_{301} = (4,56328 \cdot 1 + 0,33928 \cdot 1) / 3600 = 0,0013618 \, z/c;
M'^{X-10..-15^{\circ}C}_{301} = 0.352 \cdot 20 + 1.192 \cdot 0.015 / 10 \cdot 60 + 0.232 \cdot 1 = 7.37928 \, \epsilon;
M''^{X-10..-15^{\circ}C}_{301} = 1,192 \cdot 0,015 / 10 \cdot 60 + 0,232 \cdot 1 = 0,33928 c;
M^{\text{X-}10..-15^{\circ}\text{C}}_{301} = (7,37928 + 0,33928) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0009262 \text{ m/200};
G^{X-10..-15^{\circ}C}_{301} = (7,37928 \cdot 1 + 0,33928 \cdot 1) / 3600 = 0,002144 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{30I} = 0.352 \cdot 28 + 1.192 \cdot 0.015 / 10 \cdot 60 + 0.232 \cdot 1 = 10.19528 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{301} = 1,192 \cdot 0,015 / 10 \cdot 60 + 0,232 \cdot 1 = 0,33928 \ \epsilon;
M^{\text{X-15...20}^{\circ}\text{C}}_{301} = (10,19528 + 0,33928) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0001686 \text{ m/zod};
G_{30I} = (10.19528 \cdot 1 + 0.33928 \cdot 1) / 3600 = 0.0029263 \ z/c;
M = 0.0008226 + 0.0006697 + 0.0017649 + 0.0009262 + 0.0001686 = 0.0043521  m/200;
G = \max\{0.0003174; 0.0007752; 0.0013618; 0.002144; 0.0029263\} = 0.0029263 \ \epsilon/c.
M'^{\mathrm{T}}_{304} = 0.0377 \cdot 2 + 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.130533 \, \varepsilon;
M''^{\mathrm{T}}_{304} = 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.055133 \, \varepsilon;
M^{T}_{304} = (0.130533 + 0.055133) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0001337 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{304} = (0.130533 \cdot 1 + 0.055133 \cdot 1) / 3600 = 0.0000516 \, c/c;
M'^{\Pi}_{304} = 0.0572 \cdot 6 + 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.398333 \, \epsilon;
M^{\prime\prime}\Pi_{304} = 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.055133 \, \varepsilon;
M^{\Pi}_{304} = (0.398333 + 0.055133) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.0001088 \, \text{m/zod};
\mathbf{G}^{\Pi}_{304} = (0.398333 \cdot 1 + 0.055133 \cdot 1) / 3600 = 0.000126 \, \epsilon/c;
M'^{X}_{304} = 0.0572 \cdot 12 + 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.741533 z;
M''^{X}_{304} = 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.055133 \, z;
M^{X}_{304} = (0.741533 + 0.055133) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0002868 \, \text{m/200};
```

 $9035.1 - \Pi MOOC 3$

 $M''^{\Pi}_{2732} = 1.14 \cdot 0.015 / 5 \cdot 60 + 0.79 \cdot 1 = 0.9952 z;$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\Pi}_{2732} = (12,08194 + 0,9952) \cdot 60 \cdot 7 \cdot 10^{-6} = 0,0054924 \, \text{m/zod};$

113

```
M''^{X-10..-15^{\circ}C}_{304} = 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.055133 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{304} = (1,199133 + 0,055133) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0001505 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{304} = (1,199133 \cdot 1 + 0,055133 \cdot 1) / 3600 = 0,0003484 \ z/c;
M'^{\text{X}-15..-20^{\circ}\text{C}}_{304} = 0.0572 \cdot 28 + 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 1.656733 \ \varepsilon;
M''^{X-15..-20^{\circ}C}_{304} = 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 0.055133 \ \epsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{304} = (1,656733 + 0,055133) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0000274 \text{ m/zod};
M = 0.0001337 + 0.0001088 + 0.0002868 + 0.0001505 + 0.0000274 = 0.0007072  m/20\partial;
G = \max\{0.0000516; 0.000126; 0.0002213; 0.0003484; 0.0004755\} = 0.0004755 \ c/c.
M'^{T}_{328} = 0.04 \cdot 2 + 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.1353 \ \epsilon;
M''^{T}_{328} = 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.0553 z;
M^{\mathrm{T}}_{328} = (0.1353 + 0.0553) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0001372 \, \text{m/zod};
G^{T}_{328} = (0.1353 \cdot 1 + 0.0553 \cdot 1) / 3600 = 0.0000529 \ z/c;
M'^{\Pi}_{328} = 0.216 \cdot 6 + 0.225 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 1.35625 z;
M''^{\Pi}_{328} = 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.0553 \ \epsilon;
M^{\Pi}_{328} = (1,35625 + 0,0553) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0003388 \, \text{m/zod};
\mathbf{G}^{\Pi}_{328} = (1,35625 \cdot 1 + 0.0553 \cdot 1) / 3600 = 0.0003921 \ z/c;
M'^{X}_{328} = 0.24 \cdot 12 + 0.25 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 2.9425 z;
M''^{X}_{328} = 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.0553 z;
M^{X}_{328} = (2,9425 + 0,0553) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0010792 \text{ m/zod};
G^{X}_{328} = (2.9425 \cdot 1 + 0.0553 \cdot 1) / 3600 = 0.0008327 \ z/c;
M^{\prime X-10...15^{\circ}C}_{328} = 0.24 \cdot 20 + 0.25 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 4.8625 z;
M''^{X-10..-15^{\circ}C}_{328} = 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.0553 z;
M^{X-10..-15^{\circ}C}_{328} = (4,8625+0,0553) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0005901 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{328} = (4,8625 \cdot 1 + 0,0553 \cdot 1) / 3600 = 0,0013661 \ z/c;
M'^{\text{X-15..-20°C}}_{328} = 0.24 \cdot 28 + 0.25 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 6.7825 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{328} = 0.17 \cdot 0.015 / 10 \cdot 60 + 0.04 \cdot 1 = 0.0553 z;
M^{X-15...20^{\circ}C}_{328} = (6.7825 + 0.0553) \cdot 4 \cdot 4 \cdot 10^{-6} = 0.0001094 \, \text{m/zod};
G_{328} = (6.7825 \cdot 1 + 0.0553 \cdot 1) / 3600 = 0.0018994 \ z/c;
M = 0.0001372 + 0.0003388 + 0.0010792 + 0.0005901 + 0.0001094 = 0.0022548  m/20\partial;
G = \max\{0,0000529; 0,0003921; 0,0008327; 0,0013661; 0,0018994\} = 0,0018994 
M'^{T}_{330} = 0.058 \cdot 2 + 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.1848 \, \epsilon;
M''^{T}_{330} = 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.0688 c;
M^{T}_{330} = (0.1848 + 0.0688) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0001826 \text{ m/zod};
\mathbf{G}^{\mathrm{T}}_{330} = (0.1848 \cdot 1 + 0.0688 \cdot 1) / 3600 = 0.0000704 \, z/c;
M'^{\Pi}_{330} = 0.0648 \cdot 6 + 0.135 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.45895 \, \epsilon;
M''^{\Pi}_{330} = 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.0688 \, \epsilon;
M^{\Pi}_{330} = (0.45895 + 0.0688) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.0001267 \text{ m/zod};
\mathbf{G}^{\Pi}_{330} = (0.45895 \cdot 1 + 0.0688 \cdot 1) / 3600 = 0.0001466 \, \epsilon/c;
M'^{X}_{330} = 0.072 \cdot 12 + 0.15 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.9355 c;
M''^{X}_{330} = 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.0688 z;
M^{X}_{330} = (0.9355 + 0.0688) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0003615 \text{ m/zod};
G^{X}_{330} = (0.9355 \cdot 1 + 0.0688 \cdot 1) / 3600 = 0.000279 \ z/c;
M'^{X-10..-15^{\circ}C}_{330} = 0.072 \cdot 20 + 0.15 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 1.5115 z;
M''^{X-10..-15^{\circ}C}_{330} = 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.0688 c;
M^{\text{X}-10..-15^{\circ}\text{C}}_{330} = (1,5115+0,0688) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0001896 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{330} = (1.5115 \cdot 1 + 0.0688 \cdot 1) / 3600 = 0.000439 \ z/c;
M'^{X-15..-20^{\circ}C}_{330} = 0,072 \cdot 28 + 0,15 \cdot 0,015 / 10 \cdot 60 + 0,058 \cdot 1 = 2,0875 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{330} = 0.12 \cdot 0.015 / 10 \cdot 60 + 0.058 \cdot 1 = 0.0688 \, \varepsilon;
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

инв.

Взам.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $\mathbf{G}^{X}_{304} = (0.741533 \cdot 1 + 0.055133 \cdot 1) / 3600 = 0.0002213 \ \epsilon/c;$

 $M'^{\text{X}-10..-15^{\circ}\text{C}}_{304} = 0.0572 \cdot 20 + 0.1937 \cdot 0.015 / 10 \cdot 60 + 0.0377 \cdot 1 = 1.199133 \ \varepsilon;$

114

```
G_{330} = (2,0875 \cdot 1 + 0,0688 \cdot 1) / 3600 = 0,000599 \ z/c;
M = 0.0001826 + 0.0001267 + 0.0003615 + 0.0001896 + 0.0000345 = 0.0008949 \text{ m/zod};
G = \max\{0.0000704; 0.0001466; 0.000279; 0.000439; 0.000599\} = 0.000599 \ \epsilon/c.
M^{\prime T}_{337} = 1,4 \cdot 2 + 0,77 \cdot 0,015 / 10 \cdot 60 + 1,44 \cdot 1 = 4,3093 \ \varepsilon;
M''^{\mathrm{T}}_{337} = 0.77 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 1.5093 \ \varepsilon;
M^{T}_{337} = (4,3093 + 1,5093) \cdot 180 \cdot 4 \cdot 10^{-6} = 0,0041894 \text{ m/zod};
G^{T}_{337} = (4,3093 \cdot 1 + 1,5093 \cdot 1) / 3600 = 0,0016163 \ z/c;
M'^{\Pi}_{337} = 2,52 \cdot 6 + 0,846 \cdot 0,015 / 10 \cdot 60 + 1,44 \cdot 1 = 16,63614 \, z;
M''^{\Pi}_{337} = 0.77 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 1.5093 z;
M^{\Pi}_{337} = (16,63614 + 1,5093) \cdot 60 \cdot 4 \cdot 10^{-6} = 0,0043549 \text{ m/200};
\mathbf{G}^{\Pi}_{337} = (16,63614 \cdot 1 + 1,5093 \cdot 1) / 3600 = 0,0050404 \, \epsilon/c;
M'^{X}_{337} = 2.8 \cdot 12 + 0.94 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 35.1246 \ \epsilon;
M''^{X}_{337} = 0.77 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 1.5093 \ \epsilon;
M^{X}_{337} = (35,1246 + 1,5093) \cdot 90 \cdot 4 \cdot 10^{-6} = 0,0131882 \text{ m/zod};
G^{X}_{337} = (35,1246 \cdot 1 + 1,5093 \cdot 1) / 3600 = 0,0101761 \ z/c;
M'^{X-10..-15^{\circ}C}_{337} = 2.8 \cdot 20 + 0.94 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 57.5246 c;
M''^{X-10..-15^{\circ}C}_{337} = 0.77 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 1.5093 z;
M^{\text{X}-10..-15^{\circ}\text{C}}_{337} = (57,5246 + 1,5093) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0070841 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{337} = (57,5246 \cdot 1 + 1,5093 \cdot 1) / 3600 = 0,0163983 \ z/c;
M'^{X-15..-20^{\circ}C}_{337} = 2.8 \cdot 28 + 0.94 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 79.9246 c;
M''^{X-15..-20^{\circ}C}_{337} = 0.77 \cdot 0.015 / 10 \cdot 60 + 1.44 \cdot 1 = 1.5093 \ \varepsilon;
M^{\text{X}-15..-20^{\circ}\text{C}}_{337} = (79,9246 + 1,5093) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0013029 \text{ m/zod};
G_{337} = (79,9246 \cdot 1 + 1,5093 \cdot 1) / 3600 = 0,0226205 \ e/c;
M = 0.0041894 + 0.0043549 + 0.0131882 + 0.0070841 + 0.0013029 = 0.0301195 \text{ m/200};
G = \max\{0.0016163; 0.0050404; 0.0101761; 0.0163983; 0.0226205\} = 0.0226205 \ \epsilon/c.
M'^{\mathrm{T}}_{2704} = 0 \cdot 2 + 0 \cdot 0,015 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \varepsilon;
M''^{T}_{2704} = 0 \cdot 0.015 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{T}_{2704} = (0+0) \cdot 180 \cdot 4 \cdot 10^{-6} = 0 \text{ m/200};
\mathbf{G}^{\mathrm{T}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \, \varepsilon/c;
M'^{\Pi}_{2704} = 0 \cdot 6 + 0 \cdot 0.015 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{\Pi}_{2704} = 0 \cdot 0.015 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\Pi}_{2704} = (0+0) \cdot 60 \cdot 4 \cdot 10^{-6} = 0 \text{ m/sod};
G^{\Pi}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 c/c;
M'^{X}_{2704} = 0 \cdot 12 + 0 \cdot 0{,}015 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X}_{2704} = 0 \cdot 0.015 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{X}_{2704} = (0+0) \cdot 90 \cdot 4 \cdot 10^{-6} = 0 \text{ m/sod};
G^{X}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \varepsilon/c;
M'^{X-10..-15}°C<sub>2704</sub> = 0 \cdot 20 + 0 \cdot 0,015 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M''^{X-10..-15^{\circ}C}_{2704} = 0 \cdot 0,015 / 10 \cdot 60 + 0 \cdot 1 = 0 \ \epsilon;
M^{\text{X}-10..-15^{\circ}\text{C}}_{2704} = (0+0) \cdot 30 \cdot 4 \cdot 10^{-6} = 0 \text{ m/zod};
G^{\text{X-10..-15}^{\circ}\text{C}}_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 \ z/c;
M'^{X-15...-20^{\circ}C}_{2704} = 0 \cdot 28 + 0 \cdot 0,015 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M''^{X-15...-20^{\circ}C}_{2704} = 0 \cdot 0.015 / 10 \cdot 60 + 0 \cdot 1 = 0 \varepsilon;
M^{X-15..-20^{\circ}C}_{2704} = (0+0) \cdot 4 \cdot 4 \cdot 10^{-6} = 0 \text{ m/zod};
G_{2704} = (0 \cdot 1 + 0 \cdot 1) / 3600 = 0 z/c;
M = 0 + 0 + 0 + 0 + 0 = 0 \text{ m/200};
G = \max\{0; 0; 0; 0; 0\} = 0 \ \epsilon/c.
M'^{\mathrm{T}}_{2732} = 0.18 \cdot 2 + 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.5634 \, c;
M''^{T}_{2732} = 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.2034 z;
M^{T}_{2732} = (0.5634 + 0.2034) \cdot 180 \cdot 4 \cdot 10^{-6} = 0.0005521 \text{ m/zod};
```

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

 $M^{\text{X}-15...20^{\circ}\text{C}}_{330} = (2,0875 + 0,0688) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0000345 \text{ m/200};$

```
G^{T}_{2732} = (0.5634 \cdot 1 + 0.2034 \cdot 1) / 3600 = 0.000213 \ z/c;
M'^{\Pi}_{2732} = 0.423 \cdot 6 + 0.279 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 2.74311 \, \epsilon;
M^{\prime\prime}^{\Pi}_{2732} = 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.2034 \, \epsilon;
M^{\Pi}_{2732} = (2.74311 + 0.2034) \cdot 60 \cdot 4 \cdot 10^{-6} = 0.0007072 \text{ m/zod};
G^{\Pi}_{2732} = (2,74311 \cdot 1 + 0,2034 \cdot 1) / 3600 = 0,0008185 \, \epsilon/c;
M'^{X}_{2732} = 0.47 \cdot 12 + 0.31 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 5.8479 \ \varepsilon;
M''^{X}_{2732} = 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.2034 z;
M^{X}_{2732} = (5.8479 + 0.2034) \cdot 90 \cdot 4 \cdot 10^{-6} = 0.0021785 \text{ m/zod};
G^{X}_{2732} = (5.8479 \cdot 1 + 0.2034 \cdot 1) / 3600 = 0.0016809 \ z/c;
M'^{X-10..-15^{\circ}C}_{2732} = 0.47 \cdot 20 + 0.31 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 9.6079 \ \epsilon;
M''^{X-10..-15^{\circ}C}_{2732} = 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.2034 \, \epsilon;
M^{X-10..-15^{\circ}C}_{2732} = (9,6079 + 0,2034) \cdot 30 \cdot 4 \cdot 10^{-6} = 0,0011774 \text{ m/zod};
G^{X-10..-15^{\circ}C}_{2732} = (9.6079 \cdot 1 + 0.2034 \cdot 1) / 3600 = 0.0027254 \, z/c;
M'^{X-15...20^{\circ}C}_{2732} = 0.47 \cdot 28 + 0.31 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 13.3679 \ \epsilon;
M''^{X-15..-20^{\circ}C}_{2732} = 0.26 \cdot 0.015 / 10 \cdot 60 + 0.18 \cdot 1 = 0.2034 \, \epsilon;
M^{X-15...20^{\circ}C}_{2732} = (13,3679 + 0,2034) \cdot 4 \cdot 4 \cdot 10^{-6} = 0,0002171 \text{ m/sod};
G_{2732} = (13,3679 \cdot 1 + 0,2034 \cdot 1) / 3600 = 0,0037698 \ z/c;
M = 0.0005521 + 0.0007072 + 0.0021785 + 0.0011774 + 0.0002171 = 0.0048322  m/200;
G = \max\{0.000213; 0.0008185; 0.0016809; 0.0027254; 0.0037698\} = 0.0037698 \ c/c.
```

0								
Согласовано								
Взам. инв. №								
Подпись и дата								
Инв. № подл	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	9035.1 – ПМООС 3	Лист 115

Приложение 13

Расчет количества загрязняющих веществ, поступающих в атмосферу в период эксплуатации

1. Расчет выбросов загрязняющих веществ в атмосферу при выполнении погрузочно/разгрузочных работ (Источник №6027)

Пылевыделения при разгрузке/погрузке и перегрузке сыпучего материала ГБЖ. Расчет ведется согласно методическому пособию по расчету выбросов от неорганизованных источников в промышленности строительных материалов (Новороссийск 2000), п.5 Пересыпки пылящих материалов.

Исходные данные для расчета удельного и валового выброса пыли в процессе разгрузки ГБЖ из железнодорожных полувагонов приведены в таблице 1

Таблица 1

Согласовано

읟

Взам.

Подпись и дата

№ п/п	Наименование исходных данных	Значение исход используемых в расче Технологические данные		Обозначе значения используе	
1	Количество выгружаемого материала (ГБЖ) из ж.д. полувагонов, т/ч (т/год)			Gч (Gгод)	120 (337800)
2	Содержание пыли		0 - 200 мкм	K1	0,04
3	Содержание пыли, переходящей в аэрозоль		0-10 мкм	K2	0,03
4	Местные метеоусловия	До 2 м/с		К3	1
5	Степень защищенности узла пересыпки	закрыт с 4-х сторон		K4	0,005
6	Влажность материала		до 1 %	K5	0,9
7	Учет крупности материала		100-50 мм	K7	0,4
8	Учет неравномерности выгрузки материала			K8	1
9	Коэффициент, учитывающий мощный залповый выброс при разгрузке вагона			K9	1
10	Высота перегружаемого материала	3 м		В	0,85

Определяем удельные объёмы пылевыделений при разгрузке ж.д. вагона:

$$Mrp = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G_{4} \cdot 106/3600, r/c$$

$$Mrp = 0.04 \cdot 0.03 \cdot 1.0 \cdot 0.005 \cdot 0.9 \cdot 0.4 \cdot 1.0 \cdot 1.0 \cdot 0.85 \cdot 120 \cdot 106/3600 = 0.0612 r/c;$$
(1)

Определяем объёмы валовых выбросов при разгрузке вагонов:

 Π гр= K1·K2·K3·K4·K5·K7·K8·K9·B·Gгод, т/год (2)

 Π гр = 0,04·0,03·1,0·0,005·0,9·0,4·1,0·1,0·0,85·337800= 0,62 т/год

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Исходные данные для расчета удельного и валового выброса пыли в процессе перевалки ГБЖ в закромах грейферным краном приведены в таблице 2

Таблица 2

	олица 2	Значение исходиспользуемых в расче		Ооозначения		
№ п/п	Наименование исходных данных	Технологические данные	Данные о перегружаемом материале	значения использу расчетах	емых в параметров	
1	Паспортная производительность грейфера: а) тонн в час б)тонн в год	150 337800		Gгод	337800	
2	Коэффициент загрузки грейфера	0,36				
3	Производительность грейферного крана	0,36×150		Gч	54	
4	Содержание пыли		0 - 200 мкм	K1	0,04	
5	Содержание пыли, переходящей в аэрозоль		0-10 мкм	K2	0,03	
6	Местные метеоусловия	До 2 м/с		К3	1	
7	Степень защищенности узла пересыпки	закрыт с 4-х сторон		K4	0,005	
8	Влажность материала		3 %	K5	0,9	
9	Учет крупности материала		100-50 мм	K7	0,4	
10	Учет неравномерности выгрузки материала			K8	0,41	
11	Коэффициент, учитывающий мощный залповый выброс при загрузке автосамосвала			K9	1,0	
12	Высота перегружаемого материала	4 м		В	1,0	

Определяем удельные объёмы пылевыделений при перевалке ГБЖ:

 $Mrp = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot Gq \cdot 106/3600, r/c$ (3)

Мгр = $0.04 \cdot 0.03 \cdot 1.0 \cdot 0.005 \cdot 0.9 \cdot 0.4 \cdot 0.41 \cdot 1.0 \cdot 1.0 \cdot 54 \cdot 106 / 3600 = 0.0133$ г/с; Определяем объёмы валовых выбросов при перевалке ГБЖ:

 $\Pi\Gamma p = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot Grod, \tau/rod$ (4)

 Π гр = 0,04·0,03·1,0·0,005·0,9·0,4·0,41·1,0·1,0·337800 = 0,299 т/год

Исходные данные для расчета удельного и валового выброса пыли в процессе загрузки ГБЖ грейферным краном приведены в таблице 3

Таблица 3

Согласовано

읟

					·
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Лист

№ п/п	Наименование исходных данных	Значение исходных данны используемых в расчетах Технологические данные перегружаемо материале		Ооозначения использу	[
1	Паспортная производительность грейфера: а) тонн в час б)тонн в год	150 337800		Gгод	337800
2	Коэффициент загрузки грейфера	0,36			
3	Производительность грейферного крана	0,36×150		Gч	54
4	Содержание пыли		0 - 200 мкм	K1	0,04
5	Содержание пыли, переходящей в аэрозоль		0-10 мкм	K2	0,03
6	Местные метеоусловия	До 2 м/с		К3	1
7	Степень защищенности узла пересыпки	закрыт с 4-х сторон		K4	0,005
8	Влажность материала		3 %	K5	0,9
9	Учет крупности материала		100-50 мм	K7	0,4
10	Учет неравномерности выгрузки материала			K8	0,41
11	Коэффициент, учитывающий мощный залповый выброс при загрузке автосамосвала			K9	0,2
12	Высота перегружаемого материала	1 м		В	0,5

Определяем удельные объёмы пылевыделений при загрузке автотранспорта:

Мгр=
$$K1\cdot K2\cdot K3\cdot K4\ K5\cdot K7\cdot K8\cdot K9\cdot B\cdot Gu\cdot 106/3600$$
, г/с (5)
Мгр = $0.04\cdot 0.03\cdot 1.0\cdot 0.005\cdot 0.9\cdot 0.4\cdot 0.41\cdot 0.2\cdot 0.85\cdot 54\cdot 106\ /3600 = 0.00133\ г/с$;
Определяем объёмы валовых выбросов при загрузке автотранспорта:
Пгр= $K1\cdot K2\cdot K3\cdot K4\cdot K5\cdot K7\cdot K8\cdot K9\cdot B\cdot Groд$, т/год (6)
Пгр = $0.04\cdot 0.03\cdot 1.0\cdot 0.005\cdot 0.9\cdot 0.4\cdot 0.41\cdot 0.2\cdot 0.85\cdot 337800 = 0.0299\ т/год$

Определяем суммарные удельные объёмы пылевыделений, выделяемые в атмосферу:

0.0612 + 0.0133 + 0.00133 = 0.07583 г/с Определяем суммарные объёмы валовых выбросов, выделяемые в атмосферу:

$$0,62 + 0,299 + 0,0299 = 0,9489$$
 т/год

Состав пыли: железо общее 91% (код в-ва 0123), диоксид кремния 3,74% (код в-ва 2908), углерод 1,29% (код в-ва 0328), сера 0,008% (код в-ва 0331), фосфор 0,009% (код в-ва 0339), железо металлическое 8,51% (код в-ва 0123)

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

읟

9035.1 – ПМООС 3

Лист

Таблица 4

Код вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
123	0,07545843	0,94425
2908	0,00283604	0,035489
328	0,00097821	0,012241
331	6,0664E-06	7,59E-05
339	6,8247E-06	8,54E-05

2. Расчет выбросов загрязняющих веществ в атмосферу при работе двигателя внутреннего сгорания тепловоза на внутри склада материалов (Источник №6027)

Исходные данные для расчета выбросов при работе железнодорожного транспорта приведены в таблице 5

Таблица 5

Согласовано

읟

№ п/п	1 '	Наименование спецтехники/ автотранспорта	Кол, шт.	Двигатель
1	Доставка материалов в склад	Тепловоз ТГМ4	11	Дизель 211Д-2 (6ЧН 21/21

Расчет выбросов вредных веществ выполнен по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом).

Расчет выбросов вредных веществ (Gij, кг) с отработавшими газами тепловозов определяется в соответствии с методикой:

$$G_{ij} = \sum_{k=1}^{n} q_{ijk} \cdot T_k \cdot T \cdot K_f \cdot K_t \tag{7}$$

где Gij – общая масса i-го вещества, выброшенного j-тым двигателем при работе на k-том режиме;

qijk – удельный выброс i-го загрязняющего вещества при работе j-го двигателя на k-том режиме (кг/ч);

n – число режимов двигателя;

Tk – доли времени работы двигателя на k-том режиме;

Т – суммарное время работы тепловоза (в сутки, месяц, год), ч;

Kf — коэффициент влияния технического состояния тепловозов, принимается в соответствии с «Временными нормами и методами определения удельных выбросов загрязняющих веществ в атмосферу с отработавшими газами дизелей эксплуатируемых тепловозов» равным 1,2 для тепловозов со сроком эксплуатации более двух лет;

Kt- коэффициент влияния климатических условий работы тепловоза, принимается с учетом «Методики расчета концентрации в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86 для районов, расположенных севернее 60° северной широты равным 1.

Расчет выбросов углеводородов (керосин) и диоксид серы (SO2) произведен по удельным показателям выделения этих веществ, приведенным в таблице 5.13.1 «Методики

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

120

проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом)», 1992 г.

В случае если время прохождения участка менее 20 минут, то расчетом предусматривается осреднение максимально разовых выбросов к 20-30-минутному периоду времени в соответствии с ОНД-86 п.п. 2.3, примечание 1.

Максимально разовый выброс загрязняющих веществ с нагрузкой определяется по формуле:

$$G_{iH} = g_{iH}^0 \cdot N_{M, \Gamma/C} \tag{8}$$

где g_{iH}^0 - удельный выброс і-го загрязняющего вещества, г/кВт*сек (табл. 5.13.1),

 N_{M} - максимальная мощность, кВт.

Валовые выбросы загрязняющих веществ определяются по формуле:

$$Mi = \frac{C_i \cdot B \cdot \alpha + C_i^1 (1 - \alpha) \cdot B}{10^3}, \text{ кг/год}$$
(9)

где Сі - удельное выделение загрязняющих веществ (на холостом ходу), г/кг топлива;

 \mathbf{C}^{i} - удельное выделение загрязняющих веществ при работе двигателя с нагрузкой, г/кг топлива;

В - годовой расход дизельного топлива, кг/год;

lpha - доля работы двигателя на холостом ходу.

№ док. Подпись

Лист

Исходные данные для расчетов, максимальные разовые и валовое количество выбросов загрязняющих веществ, поступающих в атмосферу приведены в таблице 6.

Таблица 6

Согласовано

Наименование	Удельные	выбросы	на режи	імах рабо	ты, кг/час	Максимально	Валовые
веществ	(CH, SO2 -	1/KD1 CCI	K, B SHawer	aresic 17Ki	Топлива	разовые, г/с	выоросы,
Беществ	XX	25%	50%	75%	100%	ризовые, т	т/год
НОМЕР ИСТОЧН	ИКА № 6027	7 длина -	0,2 км (Кf	= 1)			
Промышленный (ГГМ4 (550 в	кВт) 1 сег	кций) Вр	емя работи	ы в год - 3	88 часов. Годо	вой расход
топлива - 4380 кг.	Скорость - 2	<u>км</u> /ч (Кт	= 1,2)				_
NO2	1,5	2,99	5,24	6	7,02	0,00748	0,081861
NO	-	-	-	-	-	0,001216	0,013302
Сажа	0,01	0,06	0,17	0,22	0,23	0,000163	0,001788
SO2	0,00015 12	-	-	-	0,0008 10	0,0055	0,049818
СО	0,64	0,76	0,93	1,28	2,63	0,002981	0,032625
Керосин	0,0007 60	-	-	-	0,0036 50	0,02475	0,249091
Время работы режимах, %	^B 68,7	20,1	8,9	1,5	0,8		
Распределение времени, сек	247,32	72,36	32,04	5,4	2,88		
ИТОГО ПО ВСЕМ	источни	KAM:					
NO2						0,00748	0,081861
NO						0,001216	0,013302
Сажа						0,000163	0,001788
SO2						0,0055	0,049818
CO						0,002981	0,032625

9035.1 – ΠΜΟΟC 3

Керосин				0,02475	0,249091
rtopoum				0,02.75	0,2 0

3. Расчет выбросов загрязняющих веществ в атмосферу при работе автомобильного транспорта на закрытых складах оборудования и материалов (Источник №6027, №6028)

Исходные данные для расчета выбросов при работе автотранспорта

и оборудования

Изм. Кол.уч. Лист № док. Подпись Дата

110/10/	mbre gamibre gam pae iera bbrepeceb i	ipii paddit abidipanionop	100
$N_{\Omega} \Pi/\Pi$	Технологическая операция	Наименование	спецтехники/Кол, шт.
		автотранспорта	
1	Вывоз материалов из склада	КамАЗ-5410	5
2	Складирование и отгрузка матери	аловПогрузчик г/п 2 т	1

Количество загрязняющих веществ, поступающих в атмосферу при работе строительной техники, рассчитано по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г., «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г. и «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Валовый выброс загрязняющих веществ, поступающих в атмосферу при работе дорожной техники, рассчитывается по формуле:

$$M_{i} = \left[\sum_{k=1}^{k} (M_{ik}^{'} + M_{ik}^{'}) + \sum_{k=1}^{k} (M_{\partial eik} \cdot t_{\partial e}^{'} + 1,3M_{\partial eik} \cdot t_{nazp}^{'} + M_{xxik} \cdot t_{xx}^{'}) \cdot 10^{-6}\right] \cdot D_{\phi},$$
(10)

где: $M_{ik}^{'}, M_{ik}^{''}$ — выбросы при выезде и въезде с территории площадки (стоянки в пределах стройплощадки), формулы 2,1 и 2,2 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» и «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)»;

 $t_{\partial s}^{\prime}$ — суммарное время движения без нагрузки всей техники данного типа в течении рабочего дня, мин;

 $t'_{\text{нагр}}$ — суммарное время движения с нагрузкой всей техники данного типа в течении рабочего дня, мин;

 t'_{xx} — суммарное время холостого хода для всей техники данного типа, в течении рабочего дня, мин;

При этом согласно «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» для перевода величины удельного выброса загрязняющего вещества «mL, (г/км)» из таблиц 2.8 и 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» следует величину «mL» умножать на рабочую скорость автотранспортных средств.

Удельные выбросы для автотранспортных средств приняты в соответствии с таблицей 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» — для автомобилей выпуска после 01.01.94г.

Согласовано				
	Passa with No	D3dM. N⊓B. N≅		
	CTC 1 1011 IO	подпись и дага		
	Man Nonon	VIUB. NETIOMI		

127 Исходные данные и результаты расчета приведены в таблице 7 Таблица 7 Время Время Удельны Удельные Время Максимальн Валовые движения движения Скорость Наименован движения, при разовыевыбросы, без ие вещества хх, мин холостом нагрузки, нагрузкой,км/ч пробеге выбросы, г/ст/год ходу МИН мин НОМЕР ИСТОЧНИКА № 6027, 6028 Автопогрузчик (дизель) выпуска после 1994 года (1 авт/час) 0,571473 CO 5.9 0.84 0.018121 CH 8,0 0,42 0,001167 0,036792 0,327215 NOx 3,4 0,46 0,010376 0,261772 NO₂ 12 13 10 0,008301 NO 0,001349 0.042538 0,026980 0,019 0,30,000856 0,051453 0,59 SO2 0,10,001632 Автомобили-самосвалы (дизель) выпуска после 1994 года (5 авт/час) CO 7,2 1,03 0,110639 3,489108 CH 0,57 0,007917 0,24966 NOx 3,9 0,56 0,059958 1,890846 1,512676 NO₂ 0,047967 12 13 10 NO 0,007795 0,24581 0,45 0,023 0,00634 0,199947 0,372942 SO₂ 0,86 0.112 0.011826 ИТОГО ПО ВСЕМ ИСТОЧНИКАМ: 4,060581 CO 0,12876 CH 0,009083 0,286452 0,009083 Керосин 0,286452 2,218061 **NO**x 0,070334 NO₂ 0,056267 1,774449 0,009143 NO 0,288348 0,226927 0,007196 0,424395 SO2 0,013458

4. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №45, 46, 47, 48)

ļ							ı
ı							ı
Ļ							ı
ı	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	ı
L		,					L

Согласовано

읟

NHB.

Взам.

Подпись и дата

Ne подл

Тепловентиляторы (подвесные теплогенераторы) ремонтно-складского коруса

Модель EUGEN S 20 A-N − 9 шт

Номинальная мощность 24,2 кВт

Высота дымовых труб (4 шт., расположение см. генплан) +14,5 (абс.44,5), диаметр 160мм Отопительный сезон 199 сут/год.

Часы работы в год –4776

Расход газа в год – 55879 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Тип топлива: Газ

Плотность топлива, $\rho = 0.7066$ кг/н.м3

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{\it H}}^{_{\it P}}=8171~{\rm ккал/м3}$

Расход топлива по паспорту для $Q_{_{\rm H}}^{_{p}}=8171~{\rm ккал/m3}$ (B0). В0 = 2,925 м3/час

Фактический расход топлива для $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle p}}=8171$ ккал/м3 (B, B'). В = 13,97 тыс.м3/год

B' = 0.81 л/c

Согласовано

읟

Взам. инв.

Подпись и дата

 $Bp = (1 - q4/100) \cdot B = 9.82 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,00 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (CNOx Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle R}^{\scriptscriptstyle P}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18.

Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

_						
Г						
	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

124

MNO' = $0.13 \cdot \text{MNOx'} = 0.00011 \text{ r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0,00070 \text{ т/год}$ MCO' = CCO' · V_{Γ} · B_{ρ} · k_{Π} = 0,00004 Γ/c Выброс диоксида серы (Mso2, Mso2'). $M SO2 = CSO2 \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00012 \text{ т/год}$ M SO2' = CSO2' · V_{Γ} · B_{p} · k_{Π} = 0,00001 Γ/c Расчётное определение выбросов бенз(а)пирена. Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд). $K_{\mathcal{A}} = 2.6 - 3.2 \cdot (Doth - 0.5) = 1$ Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр). Согласовано Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, % $Kp = 4.15 \cdot 0 + 1 = 1$ Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст). Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0 KcT = KcT' / 0.14 + 1 = 1Теплонапряжение топочного объема Qv = 1400 кВт/м3 Концентрация бенз(а)пирена (Сбп'). Коэффициент избытка воздуха на выходе из топки (аТ''): 1; 읟 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot K_{\mathcal{I}} \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$ Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18 Взам. $Cб\pi = Cб\pi' \cdot aT''/a = 0.000124576 \text{ мг/м3}$ Выброс бенз(а)пирена (Мбп, Мбп'). $Mбп = Cбп \cdot Vcr \cdot Bp \cdot kп$ $M6\pi = 0.000124576 \cdot 11.82 \cdot 9.82 \cdot 0.000001 = 1.45E-08$ т/год Подпись и дата $M6\pi' = 0.000124576 \cdot 11.82 \cdot 0.00 \cdot 0.000278 = 8.397E-10 \text{ r/c}$ Таблица 8 разовый Валовый выброс, т/год Максимально Наименование вещества выброс, г/с 0,00065 0.01115 Азота диоксид $9035.1 - \Pi MOOC 3$

Изм. Кол.уч.

Лист № док. Подпись Дата

Средняя: CCO = CCO Изм $\cdot aT/a = 6$ мг/нм3

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

 $k_{\Pi} = 0,000278$ (для максимально-разового)

MNOx = CNOx · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,01393 т/год MNOx · = CNOx · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,00081 г/с

M NO2 = $0.8 \cdot \text{MNOx} = 0.01115 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx}' = 0.00065 \text{ г/c}$ MNO = $0.13 \cdot \text{MNOx} = 0.00181 \text{ т/год}$

Коэффициент пересчета (kп). kn = 0.000001 (для валового)

Максимальная: ССО' = ССО Изм' · aT/a = 6 мг/нм3 Массовая концентрация диоксида серы при a0 = 1,18.

Максимальная: $CSO2' = CSO2 \ \text{Изм'} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

Азота оксид	0,00011	0,00181	
Углерод оксид	0,00004	0,00070	
Сера диоксид	0,00001	0,00012	
Бенз(а)пирена	8,397E-10	1,45E-08	

5. Расчет выбросов загрязняющих веществ в атмосферу при сжигании (Источники №49, 50)

Теплогенераторы ремонтно-складского коруса

Мощность 348 кВт х 4шт.=696 Квт

Наружное исполнение, расположение у фасада – см. генплан.

Две трубы высотой +14,5 (абс.44,5), диаметр 250 мм.

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 703600 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Согласовано

읟

Взам. инв.

Подпись и дата

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{H}^{p} = 8171 \text{ ккал/м3}$

Расход топлива по паспорту для $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}=8171$ ккал/м3 (B0). В0 = 73,66 м3/час

Фактический расход топлива для $Q_{\mu}^{p} = 8171$ ккал/м3 (B, B'). B = 351,80 тыс.м3/год B' = 20.40 л/c

 $Bp = (1 - q4/100) \cdot B = 247,34 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0.0036 = 0.05 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (CNOx Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18. Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$

Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Массовая концентрация диоксида серы при a0 = 1.18.

Максимальная: $CSO2' = CSO2 \ \text{Изм}' \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Средняя: CCO = CCO Изм \cdot ат/а = 6 мг/нм3

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

 $k\pi = 0.000278$ (для максимально-разового)

Коэффициент пересчета (кп). $k\pi = 0.000001$ (для валового)

Согласовано

읟

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при a = 1,18.

Таблица 9

Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,02015	0,34710
Азота оксид	0,00327	0,05640
Углерод оксид	0,00126	0,02169
Сера диоксид	0,00021	0,00362
Бенз(а)пирена	2,614E-08	4,5E-07

 Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №51)

Встроенная котельная для бытовых помещений ремонтно-складского коруса

Мошность 315 кВт

Расположение на отм. 0,000 (абс.31,0)

Высота дымовой трубы +14,5 (абс.44,5), диаметр 250мм

Отопительный сезон 199 сут/год.

Часы работы в год – 5274 (отопление, вентиляция и ГВС)

Расход газа в год — 161640 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Согласовано

읟

Взам.

Подпись и дата

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{_{\scriptscriptstyle H}}^{^{\scriptscriptstyle p}}=8171~{\rm ккал/м3}$

Расход топлива по паспорту для $Q_{\mu}^{p} = 8171$ ккал/м3 (B0). В0 = 30,65 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 161,65 тыс.м3/год В' = 8.49 л/с

 $Bp = (1 - q4/100) \cdot B = 113,65 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,02 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота. Средняя (CNOx Изм): 120 мг/нм3

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Максимальная (CNOx Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при а = 1,18.

Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$

Максимальная: $CNOx' = CNOx \ Изм' \cdot at/a = 120 \ мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

Средняя: CCO = CCO Изм \cdot ат/а = 6 мг/нм3

Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$

Массовая концентрация диоксида серы при а0 = 1,18.

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Максимальная: $CSO2' = CSO2 \text{ Изм}' \cdot \text{ат/a} = 1 \text{ мг/нм3}$

Коэффициент пересчета (кп).

 $k\pi = 0.000001$ (для валового)

 $k\pi = 0.000278$ (для максимально-разового)

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

MNOx = CNOx · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,19936 т/год

MNOx' = CNOx' · V_{Γ} · Bp' · $k_{\Pi} = 0.01048 \text{ r/c}$

 $M NO2 = 0.8 \cdot MNOx = 0.15949 \text{ т/год}$

M NO2' = $0.8 \cdot \text{MNOx'} = 0.00838 \text{ r/c}$

 $MNO = 0.13 \cdot MNOx = 0.02592 \text{ т/год}$

MNO' = $0.13 \cdot \text{MNOx'} = 0.00136 \,\text{r/c}$

Выброс оксида углерода (МСО, МСО').

 $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0,00997$ т/год

MCO' = CCO' · V_{Γ} · B_{p} · $k_{\Pi} = 0.00052 \text{ r/c}$

Выброс диоксида серы (Mso2, Mso2').

M SO2 = CSO2 · V $_{\Gamma}$ · Вр · $k\pi$ = 0,00166 т/год

M SO2' = CSO2' · V_{Γ} · B_{P} · k_{Π} = 0,00009 $_{\Gamma}/c$

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\text{Д}} = 2,6 - 3,2 \cdot (\text{Doth} - 0,5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

$$Kp = 4,15 \cdot 0 + 1 = 1$$

Согласовано

읟

Взам.

Подпись и дата

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Изм	Vonvar	Пиот	No nov	Полямон	Пото
MI3MI.	кол.уч.	JINCI	и⊻ док.	Подпись	дата

 $9035.1 - \Pi MOOC 3$

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot K_{\mathcal{I}} \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0.000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mб\pi = Cб\pi \cdot Vc\Gamma \cdot Bp \cdot k\pi$

 $Mбп = 0,000124576 \cdot 14,62 \cdot 113,65 \cdot 0,000001 = 2,07Е-07$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.02 \cdot 0.000278 = 1.088E-08 \, \text{r/c}$

Таблица 10

•		
Наименование вещества	Максимально разовый выброс, г/с	Валовый выброс, т/год
Азота диоксид	0,00838	0,15949
Азота оксид	0,00136	0,02592
Углерод оксид	0,00052	0,00997
Сера диоксид	0,00009	0,00166
Бенз(а)пирена	1,088E-08	2,07E-07

7. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источники №52)

Пункт оформления документов.

Газовый настенный котел Buderus Logamax plus GB162-70

Мощность (тах) 70 кВт

Мощность - 50 кВт

Согласовано

읟

Подпись и дата

Расположение на отм. 0,000 (абс.30,45)

Высота дымовой трубы +6,50 (абс.38,12), диаметр 110/160 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 23211 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{\it H}}^{_{\it P}}=8171~{\rm ккал/m3}$

Расход топлива по паспорту для $Q_{_{_{\!H}}}^{_{p}}=8171$ ккал/м3 (B0). В0=4,86 м3/час

Фактический расход топлива для $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}=8171$ ккал/м3 (B, B'). В = 23,21 тыс.м3/год В' = 1,35 л/с

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

130

Средняя (СПОх Изм): 120 мг/нм3 Максимальная (CNOx Изм'): 120 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода. Средняя (ССО Изм): 6 мг/нм3 Максимальная (ССО Изм'): 6 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы. Средняя (CSO2 Изм): 1 мг/нм3 Максимальная (С SO2 Изм'): 1 мг/нм3 Массовая концентрация оксидов азота при a = 1,18. Средняя: $CNOx = CNOx \ Hзm \cdot at/a = 120 \ mг/нм3$ Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при а = 1,18. Средняя: CCO = CCO Изм \cdot ат/а = 6 мг/нм3 Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Массовая концентрация диоксида серы при a0 = 1,18. Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Максимальная: $CSO2' = CSO2 \ \text{Изм}' \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Коэффициент пересчета (кп). $k\pi = 0.000001$ (для валового) kn = 0.000278 (для максимально-разового) Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2'). MNOx = CNOx · V $_{\Gamma}$ · Вр · k_{Π} = 0,02863 т/год MNOx' = CNOx' · V_{Γ} · B_{p} ' · $k_{\Pi} = 0.00166 \text{ r/c}$ $M \text{ NO2} = 0.8 \cdot M \text{NOx} = 0.02290 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx'} = 0.00133 \text{ r/c}$ $MNO = 0.13 \cdot MNOx = 0.00372 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx'} = 0.00022 \text{ r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot B_{\mathfrak{p}} \cdot k_{\Pi} = 0.00143 \text{ T/rog}$ $MCO' = CCO' \cdot V_{\Gamma} \cdot B_{\rho} \cdot k_{\Pi} = 0.00008 \, r/c$ Выброс диоксида серы (Mso2, Mso2'). M SO2 = CSO2 · V $_{\Gamma}$ · Вр · kп = 0,00024 т/год M SO2' = CSO2' · V_{Γ} · B_{p} · $k_{\Pi} = 0.00001$ r/c Расчётное определение выбросов бенз(а)пирена. Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд). $K_{\mathcal{A}} = 2.6 - 3.2 \cdot (Doth - 0.5) = 1$ Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр). Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, % $9035.1 - \Pi MOOC 3$ Изм. Кол.уч. Лист № док. Подпись Дата

 $Bp = (1 - q4/100) \cdot B = 16,32 \text{ тыс.м3/год}$

Согласовано

읟

Взам.

Подпись и дата

Инв. № подл

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,00 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_{ii}^{p} = 8171$ ккал/м3 оксидов азота.

Коэффициент избытка воздуха при замерах at = 1,18.

 $Kp = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot K_{\mathcal{A}} \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vсr \cdot Bp \cdot kп$

 $Mб\pi = 0.000124576 \cdot 14.62 \cdot 16.32 \cdot 0.000001 = 2.97E-08$ т/год

 $Mδπ' = 0.000124576 \cdot 14.62 \cdot 0.00 \cdot 0.000278 = 1.725E-09$ Γ/c

Таблица 11

тиолици тт		
Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,00133	0,02290
Азота оксид	0,00022	0,00372
Углерод оксид	0,00008	0,00143
Сера диоксид	0,00001	0,00024
Бенз(а)пирена	1,725E-09	2,97E-08

8. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источники №53, 54, 55)

Котельная БК.

Согласовано

읟

Взам.

Подпись и дата

Мошность 2000 кВт

Расположена на отм. +15,450

Три котла производительностью по 50%, т.е. 100 кВт. На каждый котел своя дымовая труба.

Высота дымовой трубы +21,55 (абс.53м). диаметр 300 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 5274 (отопление, вентиляция и ГВС)

Расход газа в год – 1023156 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

		ł			
14014	160=1	D	No =eu	Подпись	П

 $9035.1 - \Pi MOOC 3$

Лист

132

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5Низшая теплота сгорания газа, $Q_{\mu}^{p} = 8171 \text{ ккал/м3}$ Расход топлива по паспорту для $Q_{\mu}^{p} = 8171$ ккал/м3 (B0). B0 = 71.41 м3/час Фактический расхол топлива для $Q_{\mu}^{p} = 8171$ ккал/м3 (В. В'). В = 341.05 тыс.м3/гол B' = 19.78 n/c $Bp = (1 - q4/100) \cdot B = 239,78 \text{ тыс.м3/год}$ $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,05 \text{ тыс.м3/час}$ Коэффициент избытка воздуха в топке для проекта a = 1,18. Коэффициент избытка воздуха при замерах ат = 1,18. Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота. Средняя (СПОх Изм): 120 мг/нм3 Максимальная (СПОх Изм'): 120 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_{_{\scriptscriptstyle H}}^{^{p}}$ = 8171 ккал/м3 оксида углерода. Средняя (ССО Изм): 6 мг/нм3 Максимальная (ССО Изм'): 6 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы. Средняя (CSO2 Изм): 1 мг/нм3 Максимальная (С SO2 Изм'): 1 мг/нм3 Массовая концентрация оксидов азота при a = 1,18. Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$ Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при а = 1,18. Средняя: CCO = CCO Изм · aT/a = 6 мг/нм3 Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Массовая концентрация диоксида серы при a0 = 1.18. Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Максимальная: $CSO2' = CSO2 \ \text{Изм'} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Коэффициент пересчета (кп). kn = 0.000001 (для валового) $k\pi = 0,000278$ (для максимально-разового) Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2'). MNOx = CNOx · V_{Γ} · B_p · $k_{\Pi} = 0,42062$ т/год MNOx' = CNOx' · V_{Γ} · Bp' · $k_{\Pi} = 0.02441 \text{ r/c}$ $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.33650 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx'} = 0.01953 \text{ r/c}$ $MNO = 0.13 \cdot MNOx = 0.05468 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx'} = 0.00317 \text{ r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0.02103 \text{ т/год}$ MCO' = CCO' · V_{Γ} · B_{p} · k_{Π} = 0,00122 Γ/c Выброс диоксида серы (Mso2, Mso2'). M SO2 = CSO2 · V $_{\Gamma}$ · Вр · k_{Π} = 0,00351 т/год M SO2' = CSO2' · V_{Γ} · B_{p} · $k_{\Pi} = 0.00020 \text{ r/c}$

 $9035.1 - \Pi MOOC 3$

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

№ док. Подпись

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\text{Д}} = 2,6 - 3,2 \cdot (\text{Doth} - 0,5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

$$Kp = 4,15 \cdot 0 + 1 = 1$$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot K_{\mathcal{I}} \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mб\pi = Cб\pi \cdot Vc\Gamma \cdot Bp \cdot k\pi$

 $Mб\pi = 0.000124576 \cdot 14,62 \cdot 239,78 \cdot 0.000001 = 4,37Е-07$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.05 \cdot 0.000278 = 2.535E-08 \text{ r/c}$

Таблина 12

Наименование вещества	Максимально выброс, г/с	разовый	Валовый выброс, т/год
Азота диоксид	0,01953		0,33650
Азота оксид	0,00317		0,05468
Углерод оксид	0,00122		0,02103
Сера диоксид	0,00020		0,00351
Бенз(а)пирена	2,535E-08		4,37E-07

9. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источники №56, 57)

Проходная

Согласовано

읟

Взам.

Подпись и дата

Газовый настенный котел Buderus Logamax plus GB162-70

Мощность (тах) 70 кВт

Мощность - 50 кВт

Расположение на отм. 0,000 (абс.31,0)

Высота дымовой трубы +6.50 (абс. 38.12), диаметр 110/160 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год — 23211 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах

l							Γ
							l
	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	l

 $9035.1 - \Pi MOOC 3$

производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{_{_{\mathit{H}}}}^{_{\mathit{p}}}=8171$ ккал/м3

Расход топлива по паспорту для $Q_n^p = 8171$ ккал/м3 (B0). В0 = 4,86 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 23,21 тыс.м3/год В' = 1,35 л/с

 $Bp = (1 - q4/100) \cdot B = 16,32 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,00 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и Q_{μ}^{p} = 8171 ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle n}^{\scriptscriptstyle p}$ = 8171 ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle n}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Согласовано

읟

Взам. инв.

Подпись и дата

Ne подл

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18.

Средняя: $CNOx = CNOx \ H_{3M} \cdot a_{T/a} = 120 \ Mr/HM3$

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

Средняя: CCO = CCO Изм · at/a = 6 мг/нм3

Максимальная: CCO' = CCO Изм' · at/a = 6 M t/H M 3

Массовая концентрация диоксида серы при a0 = 1,18.

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Максимальная: $CSO2' = CSO2 \ \text{Изм}' \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Коэффициент пересчета (кп).

 $k\pi = 0.000001$ (для валового)

kn = 0,000278 (для максимально-разового)

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

MNOx = CNOx · V $_{\Gamma}$ · Вр · kп = 0,02863 т/год

MNOx' = CNOx' · V Γ · Bp' · k Π = 0,00166 Γ /c

 $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.02290 \text{ т/год}$

M NO2' = $0.8 \cdot \text{MNOx'} = 0.00133 \text{ r/c}$

 $MNO = 0.13 \cdot MNOx = 0.00372 \text{ т/год}$

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

MNO' = $0.13 \cdot \text{MNOx'} = 0.00022 \text{ r/c}$

Выброс оксида углерода (МСО, МСО').

 $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00143 \text{ т/год}$

MCO' = CCO' · V_{Γ} · Bp · k_{Π} = 0,00008 Γ/c

Выброс диоксида серы (Mso2, Mso2').

M SO2 = CSO2 · V $_{\Gamma}$ · Вр · k π = 0,00024 т/rод

M SO2' = CSO2' · V Γ · Bp · k Π = 0,00001 Γ /c

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\mathcal{A}} = 2,6 - 3,2 \cdot (Doth - 0,5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

 $Kp = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot Kд \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cбп = Cбп' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vcr \cdot Bp \cdot kп$

 $Mбп = 0,000124576 \cdot 14,62 \cdot 16,32 \cdot 0,000001 = 2,97E-08$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.00 \cdot 0.000278 = 1.725E-09 \text{ r/c}$

Таблина 13

Согласовано

읟

Взам.

Подпись и дата

Наименование вещества	Максимально разовый выброс, г/с	¹ Валовый выброс, т/год
Азота диоксид	0,00133	0,02290
Азота оксид	0,00022	0,00372
Углерод оксид	0,00008	0,00143
Сера диоксид	0,00001	0,00024
Бенз(а)пирена	1,725E-09	2,97E-08

10. Расчет выбросов загрязняющих веществ в атмосферу при движения автомобильной техники по внутренним проездам (Источники №6029-6043)

Количество загрязняющих веществ, поступающих в атмосферу при движении автотранспорта по внутренним проездам, рассчитано по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г., и «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Расчет валового и максимально разового выброса загрязняющих веществ от каждой стоянки расчетного объекта выполняется согласно расчетной схеме 1.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Валовый выброс і-го вещества при движении автомобилей по р-му внутреннему проезду расчетного объекта при выезде и возврате Мпрі рассчитывается раздельно для каждого периода года по формуле:

$$M_{npi}^{j} = \sum_{k=1}^{k} m_{Lik} L_{p} N_{kp} D_{p} 10^{-6}, \quad m/200$$
 (11)

где Lp - протяженность p-го внутреннего проезда, км;

Nкр - среднее количество автомобилей к-й группы, проезжающих по p-му внутреннему проезду в сутки;

ј - период года.

Для определения общего валового выброса МПі валовые выбросы одноименных веществ по периодам года суммируются

$$M_{IIi} = \sum_{p=1}^{p} \left(M_{npi}^{T} + M_{npi}^{II} + M_{npi}^{X} \right), m/co\partial$$
(12)

Максимально разовый выброс i-го вещества для p-го внутреннего проезда Gpi рассчитывается для каждого месяца по формуле:

$$G_{pi} = \frac{\sum_{K=1}^{K} m_{Li\kappa} L_{p} N_{\kappa p}'}{3600}, \varepsilon/c$$
(13)

где $N_{\kappa p}^{'}$ - количество автомобилей к-й группы , проезжающих по p-му проезду за 1 час., характеризующийся максимальной интенсивностью движения

Из полученных значений Gi выбирается максимальное.

Исходные данные для расчетов, максимальные разовые и валовое количество выбросов загрязняющих веществ, поступающих в атмосферу приведены в таблице 14.

Таблица 14

Согласовано

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/год
НОМЕР ИСТОЧНИК	A № 6029	•	•			
Грузовые после 1994	г (кроме СНГ) свы	ыше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД -	152 дней					
CO		4,9	38		0,0076222	0,0396234
СН		0,7			0,0010889	0,0056605
NOx		3,4			0,0052889	0,0274938
NO2	1,4	-		4	0,0042311	0,021995
NO		_			0,0006876	0,0035742
С		0,2			0,0003111	0,0016173
SO2		0,475			0,0007389	0,003841
ПЕРЕХОДНОЙ ПЕРИ	ЮД - 63 дней					
СО		5,31			0,00826	0,017797
СН		0,72	38		0,00112	0,0024132
NOx	1,4	3,4		4	0,0052889	0,0113954
NO2		-			0,0042311	0,0091164
NO		-			0,0006876	0,0014814

Изм. Кол.уч. Лист № док. Подпись Дата

9035.1 – ПМООС 3

Лист

	•

Наименование вещества		выоросы	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го
C		0,27			0,00042	0,0009049
SO2		0,531			0,000826	0,0017797
 ХОЛОДНЫЙ ПЕРИО	Д - 150 дней	1 -			L ·	1 *
СО	1	5,9			0,0091778	0,047082
СН		0,8	-	4	0,0012444	0,006384
NOx		3,4	-		0,0052889	0,027132
NO2	1,4	-	38		0,0042311	0,0217056
NO		-			0,0006876	0,0035272
C		0,3	-		0,0004667	0,002394
SO2		0,59			0,0009178	0,0047082
Легковые после 1994	 г (кроме СНГ) сви		і п (БЕНЗИН) І	ВПРЫСК		<u> </u>
ТЕПЛЫЙ ПЕРИОД -	· -	, , , ,	, ,			
co	ı	9,3			0,3616667	1,9869562
СН		1,4	-		0,0544444	0,2991117
NOx		0,24	-		0,0093333	0,0512763
NO2	1,4	-	1004	100	0,0074667	0,041021
NO		_	1004		0,0012133	0,0066659
C		0	-		0	0
SO2		0,057	_		0,0022167	0,0121781
ПЕРЕХОДНОЙ ПЕРИ	ИОЛ - 63 пией	0,037			0,0022107	0,0121701
CO	Тод оз дней	10,53			0,4095	0,932461
CH		1,89	1004	100	0,0735	0,1673648
NOx		0,24			0,0093333	0,0212527
NO2	1,4	0,24				0,0170021
NO NO					0,0012133	0,0027628
C		0	_		0,0012133	0,0027020
SO2		0,0639			0,002485	0,0056585
<u>302</u> ХОЛОДНЫЙ ПЕРИО	П 150 жизй	0,0039			0,002483	0,0030383
со	7Д - 130 днеи	11,7			0,455	2,466828
СН		2,1				0,442764
					0,0816667	
NOx	1.4	0,24	1004	100	0,0093333	0,0506016
NO2	1,4	_	1004	100	0,0074667	0,0404813
NO					0,0012133	0,0065782
C		0			0 0007511	0 01 40 50 5
SO2	1 20 6622	0,071			0,0027611	0,0149696
НОМЕР ИСТОЧНИК						
Грузовые после 1994		ыше 8 до 16 т (Д	ДИЗЕЛЬ)			
теплый период -	1	1	T			
СО	=	4,9			0,0017967	0,0093398
СН	0,33		38	4	0,0002567	0,0013343
NOx		3,4	7		0,0012467	0,0064807

Изм. Кол.уч. Лист № док. Подпись Дата

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

Наименование вещества	Протяженность внутреннего проезда, км		Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го,
NO2		-			0,0009973	0,0051845
NO		-			0,0001621	0,0008425
C		0,2			7,333E-05	0,0003812
SO2		0,475			0,0001742	0,0009054
ПЕРЕХОДНОЙ ПЕІ	 РИОД - 63 дней	1 *			1.7	<u> </u>
СО		5,31			0,001947	0,004195
СН		0,72		4	0,000264	0,0005688
NOx		3,4	38		0,0012467	0,0026861
NO2	0,33	-			0,0009973	0,0021489
NO		-			0,0001621	0,0003492
C		0,27	1		0,000099	0,0002133
SO2		0,531			0,0001947	0,0004195
ХОЛОДНЫЙ ПЕРИ	 ЮД - 150 дней	<u> </u>				<u>′</u>
СО		5,9			0,0021633	0,0110979
СН		0,8	38	4	0,0002933	0,0015048
NOx		3,4			0,0012467	0,0063954
NO2	0,33	-			0,0009973	0,0051163
NO		-			0,0001621	0,0008314
C		0,3			<u> </u>	0,0005643
SO2		0,59			0,0002163	0,0011098
Легковые после 199	4 г (кроме СНГ) свы	ше 1,8 до 3,5 л	L 1 (БЕНЗИН) I	І ВПРЫСК	11	
ТЕПЛЫЙ ПЕРИОД		, , , ,	, ,			
СО		9,3		100	0,08525	0,468354
СН		1,4			0,0128333	0,0705049
NOx		0,24			0,0022	0,0120866
NO2	0,33	-	1004		0,00176	0,0096692
NO					0,000286	0,0015713
C		0			0	0
SO2		0,057			0,0005225	0,0028706
——— ПЕРЕХОДНОЙ ПЕІ	DHOT (2 ×	,,,,,			,,,,,,,,,	-,
	РИОЛ - 63 лней		ı		0.006525	0.2107044
CO	РИОД - 63 днеи	10.53			0.096525	0.7197944
CO CH	РИОД - 63 днеи	10,53				0,2197944
СН	РИОД - 63 днеи	1,89			0,017325	0,0394503
CH NOx			1004	100	0,017325 0,0022	0,0394503 0,0050096
CH NOx NO2	0,33	1,89	1004	100	0,017325 0,0022 0,00176	0,0394503 0,0050096 0,0040076
CH NOx NO2 NO		0,24	1004	100	0,017325 0,0022	0,0394503 0,0050096 0,0040076 0,0006512
NOX NO2 NO		1,89 0,24 - 0	1004	100	0,017325 0,0022 0,00176 0,000286	0,0394503 0,0050096 0,0040076 0,0006512
CH NOx NO2 NO C SO2	0,33	0,24	1004	100	0,017325 0,0022 0,00176 0,000286	0,0394503 0,0050096 0,0040076 0,0006512
CH NOx NO2 NO C SO2 ХОЛОДНЫЙ ПЕРИ	0,33	1,89 0,24 - 0 0,0639	1004	100	0,017325 0,0022 0,00176 0,000286 0 0,0005858	0,0394503 0,0050096 0,0040076 0,0006512 0 0,0013338
CH NOx NO2 NO C SO2	0,33	1,89 0,24 - 0		100	0,017325 0,0022 0,00176 0,000286 0 0,0005858	0,0394503 0,0050096 0,0040076 0,0006512

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

Согласовано

Взам. инв. №

Подпись и дата

9035.1 – ПМООС 3

Лист

Наименование вещества	Протяженность внутреннего проезда, км	Удельные выбросы загрязняющих веществ при пробеге	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	DANDELIA DELICIONACEI	Валовые выбросы, т/го
NO2		-			0,00176	0,009542
NO		-			0,000286	0,0015506
С		0			0	0
SO2		0,071			0,0006508	0,0035286
НОМЕР ИСТОЧНИ	IKA № 6031	•				•
Грузовые после 199	4 г (кроме СНГ) сві	ыше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	(- 152 дней					
СО		4,9			0,0032667	0,0169814
СН		0,7			0,0004667	0,0024259
NOx		3,4			0,0022667	0,011783
NO2	0,6	-	38	4	0,0018133	0,0094264
NO		-			0,0002947	0,0015318
С		0,2			0,0001333	0,0006931
SO2		0,475			0,0003167	0,0016462
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней				<u> </u>	l .
СО		5,31			0,00354	0,0076273
СН		0,72			0,00048	0,0010342
NOx		3,4			0,0022667	0,0048838
NO2	0,6	-	38	4	0,0018133	0,003907
NO		_			0,0002947	0,0006349
C		0,27			0,00018	0,0003878
SO2		0,531			0,000354	0,0007627
 ХОЛОДНЫЙ ПЕРИ	ИОД - 150 дней	1				
СО		5,9			0,0039333	0,020178
СН		0,8				0,002736
NOx		3,4		4		0,011628
NO2	0,6		38			0,0093024
NO		-			0,0002947	0,0015116
C		0,3				0,001026
SO2	\dashv	0,59				0,0020178
			I 1 (БЕНЗИН) I	ВПРЫСК	1/	1 *
ТЕПЛЫЙ ПЕРИОД		,,	·) •			
CO		9,3			0,155	0,8515526
СН		1,4				0,1281907
NOx		0,24				0,0219756
NO2	0,6		1004	100		0,0175804
NO		_		-	-	0,0028568
C	_	0			0	0
SO2	\dashv	0,057			0,00095	0,0052192
502 ПЕРЕХОДНОЙ ПЕ		-,			2,00070	.,0002172
пы влодной пв	0,6	1	1004	100	0,1755	0,3996261

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

	•

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час		Валовые выбросы, т/го
СН		1,89			0,0315	0,0717278
NOx		0,24			0,004	0,0091083
NO2		-			0,0032	0,0072866
NO		-			0,00052	0,0011841
C		0			0	0
SO2		0,0639			0,001065	0,0024251
ХОЛОДНЫЙ ПЕРИС	 ЭД - 150 дней	ı			I	
СО		11,7			0,195	1,057212
СН		2,1			0,035	0,189756
NOx		0,24		100	0,004	0,0216864
NO2	0,6	-	1004		0,0032	0,0173491
NO		-				0,0028192
C	_	0			0	0
SO2	_	0,071			0.0011833	0,0064156
992 НОМЕР ИСТОЧНИР	 CA № 6032	0,071			0,0011033	0,0001120
Грузовые после 1994		лие 8 по 16 т ()	пизе пр)			
т рузовые поеле 1994 ТЕПЛЫЙ ПЕРИОД -		яне о до 10 1 (2	(HISESID)			
СО	132 днен	4,9			0.00392	0,0203777
CH		0,7	-			0,0029111
NOx		3,4				0,0029111
NO2	0,72		38	4		0,0141390
NO NO	-0,72			Ţ	0,0003536	0,00113117
C		0,2				0,0008317
SO2		0,475				0,0008317
502 ПЕРЕХОДНОЙ ПЕР	ИОЛ 62 жиз	0,473			0,00038	0,0019734
	иод - 63 днеи	5 21			0.004248	0.0001527
CO	_	5,31				0,0091527
CH	_	0,72				0,001241
NOx		3,4	20			0,0058605
NO2	0,72	-	38	4		0,0046884
NO ~	_	-				0,0007619
C	_	0,27				0,0004654
SO2	DH 150 "	0,531			0,0004248	0,0009153
ХОЛОДНЫЙ ПЕРИС	ЭД - 150 дней Т	L				
CO		5,9				0,0242136
CH		0,8				0,0032832
NOx		3,4				0,0139536
NO2	0,72	-	38	4		0,0111629
NO		-				0,001814
С		0,3			0,00024	0,0012312
SO2		0,59			0,000472	0,0024214

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

Согласовано

Взам. инв. №

Подпись и дата

9035.1 – ПМООС 3

Лист

		_
1	- 1	_

Лист

141

Наименование вещества	проезда, км		Количество автомобилей в день, авт/день	Максимальное количество автомобилей в гечении часа, авт/час	Максимально разовые выбросы, r/c	Валовые выбросы, т/го
ТЕПЛЫЙ ПЕРИОД					I	l .
CO		9,3			0,186	1,0218632
СН		1,4			0,028	0,1538289
NOx		0,24			0,0048	0,0263707
NO2	0,72	-	1004	100	0,00384	0,0210965
NO		-			0,000624	0,0034282
C		0			0	0
SO2		0,057			0,00114	0,006263
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	l .			1	l .
СО		10,53			0,2106	0,4795514
СН		1,89		100	0,0378	0,0860733
NOx		0,24			0,0048	0,0109299
NO2	0,72	-	1004		0,00384	0,008744
NO		-			0,000624	0,0014209
C		0			0	0
SO2		0,0639			0,001278	0,0029101
ХОЛОДНЫЙ ПЕРИ	ЮД - 150 дней	•			-	
СО		11,7			0,234	1,2686544
СН		2,1	1004	100	0,042	0,2277072
NOx		0,24			0,0048	0,0260237
NO2	0,72	-			0,00384	0,0208189
NO		-			0,000624	0,0033831
C		0			0	0
SO2		0,071			0,00142	0,0076987
НОМЕР ИСТОЧНИ	IKA № 6033	•		1		•
Грузовые после 199	4 г (кроме СНГ) свь	лше 8 до 16 т (<i>)</i>	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	(- 152 дней					
СО		4,9			0,0017422	0,0090568
СН		0,7			0,0002489	0,0012938
NOx		3,4			0,0012089	0,0062843
NO2	0,32	-	38	4	0,0009671	0,0050274
NO		-			0,0001572	0,000817
С		0,2			7,111E-05	0,0003697
SO2		0,475			0,0001689	0,000878
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					
СО		5,31			0,001888	0,0040679
СН		0,72			0,000256	0,0005516
NOx	0.22	3,4	20	4	0,0012089	0,0026047
NO2	0,32		38	4	0,0009671	0,0020837
NO					0,0001572	0,0003386
		0,27	1		0,000096	0,0002068

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

		_
1	- 1	$\overline{}$

Лист

142

Наименование вещества	проезда, км	выоросы загрязняюших	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го
SO2		0,531			0,0001888	0,0004068
ХОЛОДНЫЙ ПЕРИ	 IOД - 150 дней	, , , , , , , , , , , , , , , , , , ,			l '	<u> </u>
СО		5,9			0,0020978	0,0107616
СН		0,8			0,0002844	0,0014592
NOx		3,4			0,0012089	0,0062016
NO2	0,32	-	38	4	0,0009671	0,0049613
NO		-			0,0001572	0,0008062
С		0,3			0,0001067	0,0005472
SO2		0,59			0,0002098	0,0010762
Легковые после 199	14 г (кроме СНГ) свы	ше 1,8 до 3,5 л	і т (БЕНЗИН) І	ВПРЫСК	I	
ТЕПЛЫЙ ПЕРИОД						
СО		9,3			0,0826667	0,4541614
СН		1,4	1004	100	0,0124444	0,0683684
NOx		0,24			0,0021333	0,0117203
NO2	0,32	-			0,0017067	0,0093762
NO		-			0,0002773	0,0015236
C		0			0	0
SO2		0,057			0,0005067	0,0027836
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					<u> </u>
СО		10,53			0,0936	0,2131339
СН		1,89	1004	100	0,0168	0,0382548
NOx		0,24			0,0021333	0,0048578
NO2	0,32	-			0,0017067	0,0038862
NO		-			0,0002773	0,0006315
С		0			0	0
SO2		0,0639			0,000568	0,0012934
ХОЛОДНЫЙ ПЕРИ	ЮД - 150 дней	I.			- 1	l .
СО		11,7			0,104	0,5638464
СН		2,1			0,0186667	0,1012032
NOx		0,24			0,0021333	0,0115661
NO2	0,32	-	1004	100	0,0017067	0,0092529
NO		-			0,0002773	0,0015036
С		0			0	0
SO2		0,071			0,0006311	0,0034216
НОМЕР ИСТОЧНИ	IKA № 6034	•		•	•	•
Грузовые после 199	4 г (кроме СНГ) свы	лше 8 до 16 т (<i>)</i>	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	152 дней					
СО		4,9			0,0027767	0,0144342
СН		0,7			0,0003967	0,002062
NOx	0,51	3,4	38	4	0,0019267	0,0100156
NO2			=		0,0015413	0,0080125

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

	-	_
1	- 1	O
	/ 1	×

Наименование вещества	Протяженность внутреннего проезда, км	выбросы вагрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час		Валовые выбросы, т/го
NO		-			0,0002505	0,001302
C		0,2			0,0001133	0,0005892
SO2		0,475			0,0002692	0,0013992
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	1				1 -
СО		5,31			0,003009	0,0064832
СН		0,72			0,000408	0,0008791
NOx		3,4			0,0019267	0,0041512
NO2	0,51	-	38	4	0,0015413	0,003321
NO		-			0,0002505	0,0005397
C		0,27			0,000153	0,0003297
SO2		0,531			0,0003009	0,0006483
ХОЛОДНЫЙ ПЕРИ	ЮД - 150 дней					
СО	1	5,9			0,0033433	0,0171513
СН		0,8	38	4	0,0004533	0,0023256
NOx		3,4			0,0019267	0,0098838
NO2	0,51	-			0,0015413	0,007907
NO		-			0,0002505	0,0012849
C		0,3			0,00017	0,0008721
SO2		0,59			0,0003343	0,0017151
Легковые после 199	94 г (кроме СНГ) свы	ыше 1,8 до 3,5 л	і т (БЕНЗИН) І	ВПРЫСК	I	
	152 дней		<u> </u>			
СО		9,3			0,13175	0,7238197
СН		1,4		100	0,0198333	0,1089621
NOx		0,24			0,0034	0,0186792
NO2	0,51	-	1004			0,0149434
NO		-			0,000442	0,0024283
C		0			0	0
SO2		0,057			0,0008075	0,0044363
ПЕРЕХОДНОЙ ПЕ	 РИОД - 63 дней	1			I	
СО		10,53			0,149175	0,3396822
СН		1,89			0,026775	0,0609686
NOx		0,24				0,007742
NO2	0,51	-	1004	100	0,00272	0,0061936
NO		-				0,0010065
C		0			0	0
SO2		0,0639			0,0009053	0,0020613
ХОЛОДНЫЙ ПЕРИ		I	1	1		1
СО		11,7			0,16575	0,8986302
СН		2,1			0,02975	0,1612926
NOx	0,51	0,24	1004	100	0,0034	0,0184334
	-	<u> </u>	-			0,0147468

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в гечении часа, авт/час	Максимально разовые выбросы, r/c	Валовые выбросы, т/го
NO		-			0,000442	0,0023963
С		0			0	0
SO2		0,071			0,0010058	0,0054532
НОМЕР ИСТОЧНИ	IKA № 6035				- 1	I.
Грузовые после 199	94 г (кроме СНГ) сви	ыше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	Ц - 152 дней					
СО		4,9			0,0023956	0,0124531
СН		0,7			0,0003422	0,001779
NOx		3,4			0,0016622	0,0086409
NO2	0,44	-	38	4	0,0013298	0,0069127
NO		-			0,0002161	0,0011233
С		0,2			9,778E-05	0,0005083
SO2		0,475			0,0002322	0,0012072
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	•				
СО		5,31			0,002596	0,0055933
СН		0,72			0,000352	0,0007584
NOx		3,4			0,0016622	0,0035814
NO2	0,44	-	38	4	0,0013298	0,0028651
NO		-			0,0002161	0,0004656
С		0,27			0,000132	0,0002844
SO2		0,531			0,0002596	0,0005593
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней				-	
СО		5,9			0,0028844	0,0147972
СН		0,8			0,0003911	0,0020064
NOx		3,4			0,0016622	0,0085272
NO2	0,44	_	38	4	0,0013298	0,0068218
NO		_			0,0002161	0,0011085
С		0,3			0,0001467	0,0007524
SO2		0,59			0,0002884	0,0014797
Легковые после 199	94 г (кроме СНГ) сви	ыше 1 <u>,</u> 8 до 3,5 л	ı (БЕНЗИН) I	ВПРЫСК		
ТЕПЛЫЙ ПЕРИОД	[- 152 дней					
СО		9,3			0,1136667	0,6244719
СН		1,4			0,0171111	0,0940065
NOx		0,24			0,0029333	0,0161154
NO2	0,44	_	1004	100	0,0023467	0,0128923
NO		-			0,0003813	0,002095
С		0			0	0
SO2		0,057			0,0006967	0,0038274
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					
СО	0.44	10,53	1004	100	0,1287	0,2930592
СН	0,44	1,89	1004	100	0,0231	0,0526004

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

	_	_
1	_	Λ
	٦,	.,

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	MASODLIA DLIMMOCLI	Валовые выбросы, т/го
NOx		0,24			0,0029333	0,0066794
NO2		_			0,0023467	0,0053435
NO		-			0,0003813	0,0008683
С		0			0	0
SO2		0,0639			0,000781	0,0017784
ХОЛОДНЫЙ ПЕРИ	ОД - 150 дней		I.	l	I.	I
СО		11,7			0,143	0,7752888
СН		2,1			0,0256667	0,1391544
NOx		0,24			0,0029333	0,0159034
NO2	0,44	-	1004	100	0,0023467	0,0127227
NO		-			0,0003813	0,0020674
С		0			0	0
SO2		0,071			0,0008678	0,0047047
НОМЕР ИСТОЧНИІ	KA № 6036	l	I.	l	I .	I
Грузовые после 1994	4 г (кроме СНГ) сви	ыше 8 до 16 т (Д	ДИЗЕЛЬ)			
теплый период	- 152 дней					
СО		4,9			0,0035389	0,0183966
СН		0,7			0,0005056	0,0026281
NOx		3,4			0,0024556	0,012765
NO2	0,65	-	38	4	0,0019644	0,010212
NO		-			0,0003192	0,0016594
С		0,2			0,0001444	0,0007509
SO2		0,475			0,0003431	0,0017833
ПЕРЕХОДНОЙ ПЕР	РИОД - 63 дней	•		•	1	
СО		5,31			0,003835	0,0082629
СН		0,72			0,00052	0,0011204
NOx		3,4			0,0024556	0,0052907
NO2	0,65	_	38	4	0,0019644	0,0042326
NO		-			0,0003192	0,0006878
С		0,27			0,000195	0,0004201
SO2		0,531			0,0003835	0,0008263
ХОЛОДНЫЙ ПЕРИ	ОД - 150 дней					
СО		5,9			0,0042611	0,0218595
СН		0,8]		0,0005778	0,002964
NOx		3,4			0,0024556	0,012597
NO2	0,65	-	38	4	0,0019644	0,0100776
NO		-			0,0003192	0,0016376
С		0,3]		0,0002167	0,0011115
SO2		0,59			0,0004261	0,002186

Инв. №подл

Согласовано

Взам. инв. №

Подпись и дата

9035.1 – ПМООС 3

Лист

1	_	1
- 1	`	1

Наименование вещества	Протяженность внутреннего проезда, км		Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, r/c	Валовые выбросы, т/го
СО		9,3			0,1679167	0,9225154
СН		1,4			0,0252778	0,1388733
NOx		0,24			0,0043333	0,0238068
NO2	0,65	-	1004	100	0,0034667	0,0190455
NO		-			0,0005633	0,0030949
С		0			0	0
SO2		0,057			0,0010292	0,0056541
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	l	I		I.	l.
СО		10,53			0,190125	0,4329283
СН		1,89			0,034125	0,0777051
NOx		0,24			0,0043333	0,0098673
NO2	0,65	-	1004	100	0,0034667	0,0078938
NO		_			0,0005633	0,0012828
С		0			0	0
SO2		0,0639			0,0011538	0,0026272
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней	•			1	
СО		11,7	1004	100	0,21125	1,145313
СН		2,1			0,0379167	0,205569
NOx		0,24			0,0043333	0,0234936
NO2	0,65	_			0,0034667	0,0187949
NO		-			0,0005633	0,0030542
С		0			0	0
SO2		0,071			0,0012819	0,0069502
НОМЕР ИСТОЧНИ	IKA № 6037	•		1		•
Грузовые после 199	94 г (кроме СНГ) свы	ше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	[- 152 дней					
СО		4,9			0,0017422	0,0090568
СН		0,7			0,0002489	0,0012938
NOx		3,4			0,0012089	0,0062843
NO2	0,32	-	38	4	0,0009671	0,0050274
NO					0,0001572	0,000817
С		0,2			7,111E-05	0,0003697
SO2		0,475			0,0001689	0,000878
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					
СО		5,31			0,001888	0,0040679
СН		0,72			0,000256	0,0005516
NOx		3,4			0,0012089	0,0026047
NO2	0,32	-	38	4	0,0009671	0,0020837
NO		-			0,0001572	0,0003386
С		0,27			0,000096	0,0002068
			1		0,0001888	0,0004068

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

^	,

Наименование вещества	проезда, км	выбросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	DANDELIA DELICIONACEI	Валовые выбросы, т/го
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней	•				
СО		5,9			0,0020978	0,0107616
СН		0,8			0,0002844	0,0014592
NOx		3,4			0,0012089	0,0062016
NO2	0,32	-	38	4	0,0009671	0,0049613
NO		-			0,0001572	0,0008062
С		0,3			0,0001067	0,0005472
SO2		0,59			0,0002098	0,0010762
	94 г (кроме СНГ) свы	ыше 1,8 до 3,5 л	і (БЕНЗИН) І	ВПРЫСК		
ТЕПЛЫЙ ПЕРИОД		T	T			T
СО		9,3			,	0,4541614
СН		1,4			<u> </u>	0,0683684
NOx		0,24	1004	100	<u> </u>	0,0117203
NO2	0,32	-				0,0093762
NO		-			,	0,0015236
C		0			0	0 0027026
SO2	DYYO W . 62 . W	0,057	/		0,0005067	0,0027836
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 днеи	10.52			0.0026	0.2121220
CO		10,53 1,89			,	0,2131339
CH NOx		0,24		100	,	0,0382548
NO2	0,32	0,24	1004		<u> </u>	0,0048378
NO	0,32		1004			0,0006315
C		0			0	0
SO2		0,0639			0,000568	0,0012934
холодный пері	 ИОЛ - 150 лней	0,000			0,000200	0,001233
СО		11,7			0,104	0,5638464
СН		2,1			-	0,1012032
NOx		0,24			-	0,0115661
NO2	0,32	-	1004	100		0,0092529
NO		_			0,0002773	0,0015036
С		0			0	0
SO2		0,071			0,0006311	0,0034216
НОМЕР ИСТОЧНИ	IKA № 6038				•	
Грузовые после 199	94 г (кроме СНГ) свы	ше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	(- 152 дней					
СО		4,9			0,0017422	0,0090568
СН		0,7			0,0002489	0,0012938
NOx	0,32	3,4	38	4	0,0012089	0,0062843
NO2					0,0009671	0,0050274
NO	7	-			0,0001572	0,000817

Инв. № подл Подпись и дата

Изм. Кол.уч. Лист № док. Подпись Дата

Взам. инв. №

Согласовано

9035.1 – ПМООС 3

Лист

•	- 2

Наименование вещества	Протяженность внутреннего проезда, км	Удельные выбросы загрязняющих веществ при пробеге	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го,
С		0,2			7,111E-05	0,0003697
SO2		0,475			0,0001689	0,000878
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					I
СО		5,31			0,001888	0,0040679
СН		0,72			0,000256	0,0005516
NOx		3,4			0,0012089	0,0026047
NO2	0,32	-	38	4	0,0009671	0,0020837
NO		-			0,0001572	0,0003386
C		0,27			0,000096	0,0002068
SO2		0,531			0,0001888	0,0004068
ХОЛОДНЫЙ ПЕРИ	 IOЛ - 150 лней	- 7			.,,	.,
СО	1	5,9			0,0020978	0,0107616
СН		0,8	38 4	4	0,0002844	0,0014592
NOx		3,4			0.0012089	0,0062016
NO2	0,32	5,1			0,0009671	0,0049613
NO	0,32		50		0,0001572	0,0008062
C		0,3	-		0,0001972	0,0005472
SO2		0,59			0,0002098	0,0010762
ГЕПЛЫЙ ПЕРИОД	(- 152 дней					
ТЕПЛЫЙ ПЕРИОД	(- 152 дней	1	T	I		Ι
ТЕПЛЫЙ ПЕРИОД СО	[- 152 дней	9,3			0,0826667	0,4541614
СО	(- 152 дней	1,4			0,0124444	0,0683684
CO CH NOx					0,0124444 0,0021333	0,0683684 0,0117203
СО	0,32	1,4	1004	100	0,0124444	0,0683684
CO CH NOx		1,4	1004	100	0,0124444 0,0021333	0,0683684 0,0117203
CO CH NOx NO2		1,4	1004	100	0,0124444 0,0021333 0,0017067	0,0683684 0,0117203 0,0093762
CO CH NOx NO2 NO		0,24	1004	100	0,0124444 0,0021333 0,0017067	0,0683684 0,0117203 0,0093762
CO CH NOx NO2 NO C	0,32	1,4 0,24 - 0	1004	100	0,0124444 0,0021333 0,0017067 0,0002773	0,0683684 0,0117203 0,0093762 0,0015236
CO CH NOx NO2 NO C SO2	0,32	1,4 0,24 - 0	1004	100	0,0124444 0,0021333 0,0017067 0,0002773	0,0683684 0,0117203 0,0093762 0,0015236
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ	0,32	1,4 0,24 - 0 0 0,057	1004	100	0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836
CO CH NOX NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ	0,32	1,4 0,24 - 0 0 0,057	1004	100	0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO	0,32	1,4 0,24 - 0 0 0,057	1004	100	0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH	0,32	1,4 0,24 - 0 0 0,057			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx	0,32	1,4 0,24 - 0 0 0,057			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2 NO C	0,32	1,4 0,24 - 0 0,057 10,53 1,89 0,24			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2	0,32	1,4 0,24 - 0 0 0,057 10,53 1,89 0,24			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067 0,0002773 0	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2 NO C SO2	0,32	1,4 0,24 - 0 0 0,057 10,53 1,89 0,24			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067 0,0002773 0	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2 NO C SO2 XОЛОДНЫЙ ПЕРИ	0,32	1,4 0,24 - 0 0 0,057 10,53 1,89 0,24 - 0 0,0639			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067 0,0002773 0 0,000568	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315 0 0,0012934
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2 NO C SO2 XOЛОДНЫЙ ПЕРИ	0,32	1,4 0,24 - 0 0 0,057 10,53 1,89 0,24 - 0 0,0639			0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067 0,0002773 0 0,000568	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315 0 0,0012934
CO CH NOx NO2 NO C SO2 ПЕРЕХОДНОЙ ПЕ CO CH NOx NO2 C SO2 XОЛОДНЫЙ ПЕРИ CO CH	0,32 РИОД - 63 дней 0,32	1,4 0,24 - 0 0 0,057 10,53 1,89 0,24 - 0 0,0639	1004	100	0,0124444 0,0021333 0,0017067 0,0002773 0 0,0005067 0,0936 0,0168 0,0021333 0,0017067 0,0002773 0 0,000568	0,0683684 0,0117203 0,0093762 0,0015236 0 0,0027836 0,2131339 0,0382548 0,0048578 0,0038862 0,0006315 0 0,0012934 0,5638464 0,1012032

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

9035.1 – ПМООС 3

Лист

Наименование вещества	проезда, км	решестр при	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час		Валовые выбросы, т/го
C		0			0	0
SO2		0,071			0,0006311	0,0034216
НОМЕР ИСТОЧНИ	IKA № 6039				I.	
Грузовые после 199	94 г (кроме СНГ) свы	ше 8 до 16 т (Д	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	(- 152 дней					
СО		4,9			0,0026133	0,0135852
СН		0,7			0,0003733	0,0019407
NOx		3,4			0,0018133	0,0094264
NO2	0,48	-	38	4	0,0014507	0,0075411
NO		-			0,0002357	0,0012254
С		0,2			0,0001067	0,0005545
SO2		0,475			0,0002533	0,0013169
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	1			ı	
СО		5,31			0,002832	0,0061018
СН		0,72		4	0,000384	0,0008274
NOx		3,4			0,0018133	0,003907
NO2	0,48	-	38		0,0014507	0,0031256
NO		-			0,0002357	0,0005079
С		0,27			0,000144	0,0003103
SO2		0,531			0,0002832	0,0006102
ХОЛОДНЫЙ ПЕРИ	ИОД - 150 дней					
СО		5,9			0,0031467	0,0161424
СН		0,8			0,0004267	0,0021888
NOx		3,4			0,0018133	0,0093024
NO2	0,48	-	38	4	0,0014507	0,0074419
NO		-			0,0002357	0,0012093
С		0,3			0,00016	0,0008208
SO2		0,59			0,0003147	0,0016142
Легковые после 199	94 г (кроме СНГ) свы	лше 1,8 до 3,5 л	ı (БЕНЗИН) I	ВПРЫСК	-	
ТЕПЛЫЙ ПЕРИОД	(- 152 дней					
СО		9,3			0,124	0,6812421
СН		1,4			0,0186667	0,1025526
NOx		0,24			0,0032	0,0175804
NO2	0,48	-	1004	100	0,00256	0,0140644
NO		-			0,000416	0,0022855
С		0			0	0
SO2		0,057			0,00076	0,0041754
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	1			ı	
СО		10,53			0,1404	0,3197009
СН	0,48	1,89	1004	100	0,0252	0,0573822
NOx		0,24			0,0032	0,0072866

Инв. №подл

Согласовано

Взам. инв. №

Подпись и дата

9035.1 – ПМООС 3

Лист

	_	_
1	_	$\boldsymbol{\epsilon}$
	٦,	٦

Наименование вещества	Протяженность внутреннего проезда, км	Удельные выбросы загрязняющих веществ при пробеге	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го
NO2		-			0,00256	0,0058293
NO					0,000416	0,0009473
C		0			0	0
SO2		0,0639			0,000852	0,0019401
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней	1 '				
СО		11,7			0,156	0,8457696
СН		2,1			0,028	0,1518048
NOx		0,24			0,0032	0,0173491
NO2	0,48	-	1004	100	0,00256	0,0138793
NO		-			0,000416	0,0022554
C		0			0	0
SO2		0,071			0,0009467	0,0051324
НОМЕР ИСТОЧНИ	IKA № 6040					
Грузовые после 199	94 г (кроме СНГ) свы	ыше 8 до 16 т (<i>)</i>	ЦИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	[- 152 дней	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
СО		4,9			0,0013611	0,0070756
СН		0,7			0,0001944	0,0010108
NOx		3,4			0,0009444	0,0049096
NO2	0,25	-	38	4	0,0007556	0,0039277
NO		-			0,0001228	0,0006382
С		0,2			5,556E-05	0,0002888
SO2		0,475			0,0001319	0,0006859
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней	l	I		1	I
СО		5,31			0,001475	0,003178
СН		0,72			0,0002	0,0004309
NOx		3,4			0,0009444	0,0020349
NO2	0,25	-	38	4	0,0007556	0,0016279
NO		-			0,0001228	0,0002645
С		0,27			0,000075	0,0001616
SO2		0,531			0,0001475	0,0003178
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней	l	I		1	I
СО		5,9			0,0016389	0,0084075
СН		0,8			0,0002222	0,00114
NOx		3,4			0,0009444	0,004845
NO2	0,25	-	38	4	0,0007556	0,003876
NO		-			0,0001228	0,0006299
С		0,3			8,333E-05	0,0004275
SO2		0,59			0,0001639	0,0008408
Легковые после 199	94 г (кроме СНГ) свы	ыше 1,8 до 3,5 л	т (БЕНЗИН) 1	ВПРЫСК	1	1
ТЕПЛЫЙ ПЕРИОД			· /			
CO		9,3	1004	100	0,0645833	0,3548136

Инв. №подл

Согласовано

Взам. инв. №

Подпись и дата

9035.1 – ПМООС 3

Лист

1	_	_

Наименование вещества	Протяженность внутреннего проезда, км		Количество автомобилей в день, авт/день	Максимальное количество автомобилей в гечении часа, авт/час	DATABLE DITURNALI	Валовые выбросы, т/го
СН		1,4			0,0097222	0,0534128
NOx		0,24			0,0016667	0,0091565
NO2		-			0,0013333	0,0073252
NO		-			0,0002167	0,0011903
С		0			0	0
SO2		0,057			0,0003958	0,0021747
ПЕРЕХОДНОЙ ПЕ	ЕРИОД - 63 дней	l .			-	
СО		10,53			0,073125	0,1665109
СН		1,89			0,013125	0,0298866
NOx		0,24			0,0016667	0,0037951
NO2	0,25	-	1004	100	0,0013333	0,0030361
NO		-			0,0002167	0,0004934
С		0			0	0
SO2		0,0639			0,0004438	0,0010105
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней	L	I	<u> </u>	1	
СО		11,7			0,08125	0,440505
СН		2,1			0,0145833	0,079065
NOx		0,24			0,0016667	0,009036
NO2	0,25	-	1004	100	0,0013333	0,0072288
NO		-			0,0002167	0,0011747
C		0			0	0
SO2		0,071	1		0,0004931	0,0026732
НОМЕР ИСТОЧНІ	 ⁄IKA № 6041					
Грузовые после 199	94 г (кроме СНГ) свь	лше 8 до 16 т (Д	ДИЗЕЛЬ)			
<u>тэ</u> ТЕПЛЫЙ ПЕРИОД		7. 0				
CO		4,9			0,0010889	0,0056605
СН		0,7				0,0008086
NOx		3,4				0,0039277
NO2	0,2		38	4		0,0031421
NO		_				0,0005106
C		0,2				0,000231
SO2		0,475				0,0005487
ПЕРЕХОДНОЙ ПЕ	 ЕРИОЛ - 63 лней	-,.,.			2,0001000	-,0000107
СО	1	5,31			0,00118	0,0025424
СН		0,72				0,0003447
NOx		3,4				0,0016279
NO2	0,2		38	4		0,0013023
NO		-		:		0,0002116
C		0,27				0,0002110
SO2		0,531				0,0001233
J-0-2		0,551			0,000110	0,0002342

Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

Подпись и дата

Согласовано

Взам. инв. №

9035.1 – ПМООС 3

Лист

4	_	_
1	1	1

Лист

152

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы, г/с	Валовые выбросы, т/го
CO		5,9			0,0013111	0,006726
СН		0,8			0,0001778	0,000912
NOx		3,4			0,0007556	0,003876
NO2	0,2	_	38	4	0,0006044	0,0031008
NO		-			9,822E-05	0,0005039
С		0,3			6,667E-05	0,000342
SO2		0,59			0,0001311	0,0006726
Легковые после 1994	г (кроме СНГ) сві	ыше 1,8 до 3,5 л	т (БЕНЗИН) I	ВПРЫСК	•	
ТЕПЛЫЙ ПЕРИОД -	- 152 дней					
СО		9,3			0,0516667	0,2838509
СН		1,4			0,0077778	0,0427302
NOx		0,24			0,0013333	0,0073252
NO2	0,2	-	1004	100	0,0010667	0,0058601
NO		-			0,0001733	0,0009523
С		0	1		0	0
SO2		0,057			0,0003167	0,0017397
ПЕРЕХОДНОЙ ПЕР	ИОД - 63 дней	•	•	1		
СО		10,53			0,0585	0,1332087
СН		1,89	1004		0,0105	0,0239093
NOx		0,24			0,0013333	0,0030361
NO2	0,2	-		100	0,0010667	0,0024289
NO		-			0,0001733	0,0003947
С		0			0	0
SO2		0,0639	1		0,000355	0,0008084
ХОЛОДНЫЙ ПЕРИС	ОД - 150 дней	•			-	
СО		11,7			0,065	0,352404
СН		2,1			0,0116667	0,063252
NOx		0,24			0,0013333	0,0072288
NO2	0,2	-	1004	100	0,0010667	0,005783
NO		-			0,0001733	0,0009397
С		0			0	0
SO2		0,071			0,0003944	0,0021385
НОМЕР ИСТОЧНИК	KA № 6042		l .		1	
Грузовые после 1994	г (кроме СНГ) свы	ыше 8 до 16 т (Д	ДИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД -	- 152 дней					
СО		4,9			0,0010889	0,0056605
СН		0,7]		0,0001556	0,0008086
NOx		3,4			0,0007556	0,0039277
NO2	0,2	-	38	4	0,0006044	0,0031421
NO		-	1		9,822E-05	0,0005106
C		0,2				0,000231

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

	_	_
1	_	()

Наименование вещества	Протяженность внутреннего проезда, км	выоросы загрязняющих	Количество автомобилей в день, авт/день	Максимальное количество автомобилей в гечении часа, авт/час	nacortie prionocti	Валовые выбросы, т/го
SO2		0,475			0,0001056	0,0005487
ПЕРЕХОДНОЙ ПЕ	РИОД - 63 дней					
СО		5,31			0,00118	0,0025424
СН		0,72			0,00016	0,0003447
NOx		3,4			0,0007556	0,0016279
NO2	0,2	-	38	4	0,0006044	0,0013023
NO		-			9,822E-05	0,0002116
С		0,27			0,00006	0,0001293
SO2		0,531			0,000118	0,0002542
ХОЛОДНЫЙ ПЕРИ	ЮД - 150 дней					
СО		5,9			0,0013111	0,006726
СН		0,8			0,0001778	0,000912
NOx		3,4			0,0007556	0,003876
NO2	0,2	-	38	4	0,0006044	0,0031008
NO		-			9,822E-05	0,0005039
С		0,3			6,667E-05	0,000342
SO2		0,59			0,0001311	0,0006726
Легковые после 199	4 г (кроме СНГ) сви	ыше 1,8 до 3,5 л	ı (БЕНЗИН) l	ВПРЫСК	l	I
ТЕПЛЫЙ ПЕРИОД	- 152 дней					
СО		9,3			0,0516667	0,2838509
СН		1,4	1004		0,0077778	0,0427302
NOx		0,24		100	0,0013333	0,0073252
NO2	0,2	-			0,0010667	0,0058601
NO		_			0,0001733	0,0009523
С		0			0	0
SO2		0,057			0,0003167	0,0017397
ПЕРЕХОДНОЙ ПЕ	 РИОД - 63 дней	1	1	I.	<u> </u>	1
СО		10,53			0,0585	0,1332087
СН		1,89				0,0239093
NOx		0,24			-	0,0030361
NO2	0,2	-	1004	100		0,0024289
NO		-				0,0003947
C		0			0	0
SO2		0,0639			0,000355	0,0008084
 ХОЛОДНЫЙ ПЕРИ	 ІОД - 150 дней	<u>1 ^</u>	<u> </u>	<u>I</u>	1.	<u> * </u>
СО	, , , , , , , , , , , , , , , , , , , ,	11,7			0,065	0,352404
СН		2,1				0,063252
NOx		0,24				0,0072288
NO2	0,2		1004	100	0,0010667	0,005783
	\dashv					0,0009397
NO					0.0001133	0,000/0///

Подпись и дата Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

Взам. инв. №

Согласовано

9035.1 – ПМООС 3

Лист

Лист

154

Наименование вещества	Протяженность внутреннего проезда, км	загрязняющих	автомооилеи	Максимальное количество автомобилей в течении часа, авт/час	Максимально разовые выбросы г/с	Валовые выбросы, т/го
SO2		0,071			0,0003944	0,0021385
НОМЕР ИСТОЧНИ	IKA № 6043	l	I.		ı	<u>I</u>
Грузовые после 199	94 г (кроме СНГ) свы	ыше 8 до 16 т (Д	ДИЗЕЛЬ)			
ТЕПЛЫЙ ПЕРИОД	Ц - 152 дней					
СО		4,9			0,0008167	0,0042454
СН		0,7			0,0001167	0,0006065
NOx		3,4			0,0005667	0,0029458
NO2	0,15	-	38	4	0,0004533	0,0023566
NO		_			7,367E-05	0,0003829
С		0,2			3,333E-05	0,0001733
SO2		0,475			7,917E-05	0,0004115
ПЕРЕХОДНОЙ ПЕ	ЕРИОД - 63 дней	•			1	
СО		5,31			0,000885	0,0019068
СН		0,72			0,00012	0,0002586
NOx		3,4			0,0005667	0,0012209
NO2	0,15	-	38	4	0,0004533	0,0009768
NO		-	- -		7,367E-05	0,0001587
С		0,27			0,000045	9,696E-05
SO2		0,531			0,0000885	0,0001907
ХОЛОДНЫЙ ПЕРІ	ИОД - 150 дней		I.		I	<u> </u>
СО		5,9		4	0,0009833	0,0050445
СН		0,8	-		0,0001333	0,000684
NOx		3,4	-		0,0005667	0,002907
NO2	0,15	-	38		0,0004533	0,0023256
NO		-	-		7,367E-05	0,0003779
С		0,3	-		0,00005	0,0002565
SO2		0,59	-		9,833E-05	0,0005045
Легковые после 199	94 г (кроме СНГ) сві	ыше 1,8 до 3,5 л	т (БЕНЗИН) I	ВПРЫСК	L ·	
 ТЕПЛЫЙ ПЕРИОД	Ц - 152 дней					
СО		9,3			0,03875	0,2128882
СН		1,4			0,0058333	0,0320477
NOx		0,24			0,001	0,0054939
NO2	0,15	-	1004	100	0,0008	0,0043951
NO		-	1		0,00013	0,0007142
C		0	1		0	0
SO2		0,057	1		0,0002375	0,0013048
ПЕРЕХОДНОЙ ПЕ	 РИОД - 63 дней	<u> </u>	<u> </u>		I .	<u> </u>
СО	,,	10,53			0,043875	0,0999065
CH		1,89	1		0,007875	0,0179319
NOx	0,15	0,24	1004	100	0,001	0,0022771
		,,,,,,	4		-,001	0,0022//1

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

наименование	внутреннего	выбросы загрязняющих	Количество автомобилей в день,		MANAGETTA DETAMAGET	Валовые выбросы, т/год
NO		-			0,00013	0,000296
С		0			0	0
SO2		0,0639			0,0002663	0,0006063
ХОЛОДНЫЙ ПЕРИОД	(- 150 дней					
СО		11,7			0,04875	0,264303
СН		2,1			0,00875	0,047439
NOx		0,24			0,001	0,0054216
NO2	0,15	-	1004	100	0,0008	0,0043373
NO		-			0,00013	0,0007048
С		0			0	0
SO2		0,071			0,0002958	0,0016039
ИТОГО ПО ВСЕМ ИС	ТОЧНИКАМ:					
СО					6,1578227	27,022322
СН					1,0485814	4,5459142
Бензин					1,0315861	4,474762
Керосин					0,0169953	0,0711522
NOx					0,2158867	0,9308969
NO2					0,1727093	0,7447175
NO					0,0280653	0,1210166
С					0,0058948	0,0241948
SO2					0,0489458	0,2122869

11. Расчет выбросов загрязняющих веществ от стоянок автомобильного транспорта (Источник №6044-6050)

Количество загрязняющих веществ, поступающих в атмосферу при работе автотранспорта на стоянках, рассчитано по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г., и «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Выбросы і-го вещества одним автомобилем к-й группы в день при выезде с территории или помещения стоянки $^{\mathbf{M}_{1ik}}$ и возврате $^{\mathbf{M}_{2ik}}$ рассчитываются по формулам:

$$M_{1ik} = m_{npik} \cdot t_{np} + m_{Lik} \cdot L_1 + m_{xxik} \cdot t_{xx1}, z$$

$$M_{2ik} = m_{Lik} \cdot L_2 + m_{xxik} \cdot t_{xx2}, z$$
(14)

где m_{npik} - удельный выброс і-го вещества при прогреве двигателя автомобиля к-й группы, г/мин;

l						
l	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

 m_{Lik} - пробеговый выброс і-го вещества, автомобилем к-й группы при движении со скоростью 10-20 км/час, г/км;

 m_{xxik} - удельный выброс i-го вещества при работе двигателя автомобиля к-й группы на холостом ходу, г/мин;

tnp - время прогрева двигателя, мин;

L1, L2 - пробег автомобиля по территории стоянки, км:

 t_{xx1}, t_{xx2} - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё (1 мин).

При этом согласно «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» для перевода величины удельного выброса загрязняющего вещества «mL, (г/км)» из таблиц 2.1 - 2.3, 2.7 - 2.9 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» следует величину «mL» умножать на рабочую скорость автотранспортных средств, а выбросы распределяются таким образом: при прогреве двигателя загрязняющие вещества отводятся местными отсосами от выхлопных труб автомобилей, а пробеговый выброс и выброс при работе на холостом ходу отводится в атмосферу через общеобменную вентиляция помещения.

Удельные выбросы для автотранспортных средств приняты в соответствии с «Методикой проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» — для автомобилей выпуска после 01.01.94г.

Валовый выброс і-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле:

$$M_{j}^{i} = \sum_{k=1}^{k} \alpha_{B} (M_{1ik} + M_{2ik}) N_{k} D_{p} 10^{-6}, m/cod$$
(16)

где $\alpha_{\!\scriptscriptstyle B}$ - коэффициент выпуска (выезда), 1;

Изм. Кол.уч. Лист № док. Подпись Дата

NK - количество автомобилей к-й группы на территории или в помещении стоянки за расчетный период;

Dp - количество дней работы в расчетном периоде (холодном, теплом, переходном),365;
 j - период года (Т - теплый, П - переходный, X - холодный);

Поскольку стоянка отапливаемая все расчеты ведутся для теплого периода.

Максимально разовый выброс i-го вещества Gi рассчитывается по исходя из условия, что время въезда-выезда всей техники составит 20мин, скорость при выезде 10 км/час.

Максимально разовый выброс i-го вещества Gi рассчитывается по формуле:

$$G_{i} = \frac{\sum_{k=1}^{K} \left(m_{npik} t_{np} + m_{Lik} L_{1} + m_{xxik} t_{xx1} \right) N_{k}'}{3600}, \varepsilon/c$$
(17)

где N_k^i - количество автомобилей к-й группы, выезжающих со стоянки.

где N_k^i - количество автомобилей к-й группы, выезжающих со стоянки за среднее время выезда всей техники со стоянки.

Исходные данные для расчетов, максимальные разовые и валовое количество выбросов загрязняющих веществ, поступающих в атмосферу приведены в таблице 15.

Инв. № подл	Подпись и дата	935

Согласовано

				0025	1 – ПМО)OC 3		
			<u>1</u>			<u> </u>	<u> </u>	
NO C		0		0			0,0002496	3
NO	-		1		-			0,001
NO2			10	-			0,001536	0,011
NOx		0,24		0,04			0,00192	0,014
СН	0,05	2,1]	0,27	2	-	0,01215	0,087
СО	0,05	11,7		5,7	2	1,9	0,21485	1,396
холодный:	 ПЕРИОЛ	1				<u> </u>		2
SO2		0,0639		0,0117		0,01	0,000583	0,001
C		0		0		0	0	0
NO		-		-		_	0,0002496	0,000
NO2	_	-	-	-	_	-	0,001536	0,004
NOx		0,24	4	0,04			0,00192	0,005 5
СН	0,05	1,89		0,243	2	0,15	0,011235	0,034
CO	0,05	10,53		5,13	2	1,9	0,197165	2
ПЕРЕХОДНО				5 10		1.0	0.10=1.5=	0,545
SO2	й перио	0,057		0,011		0,01	0,0005585	5
	\dashv	0	-	0	-			0,004
NO C		-		0	_		0,0002106	6
NO2		-	_	-	_	-	0,001296	6 0,010
NOx		0,24	3	0,03	-	0,03	0,00162	5 0,010
CH	0,05	1,4		0,18	1		0,0091	6 0,012
CO	0,05	9,3	_	2,9	2		0,12965	6 0,070
ТЕПЛЫЙ ПЕР				2.0	<u></u>	1.0	0.12065	0,942
авт/час)								•
номер исто Легковые посл							СК - 360 авт	г/день
НОМЕР ИСТО		пробеге	ATILY O	прогреве	EES OEOI	DED A		
	24.72	при	, , , , , , , ,	при	, мин	м ходу	г/с	, 1,10,
вещества	Возврат,	, щих веществ	прогрев а, мин	щих веществ	выезеде / возврате	холосто	выбросы,	выбро , т/год
Наименование	Выезд	/загрязняю	Время	загрязняю	хх при	е на	но разовые	
		выбросы		выбросы	Время	Vпепьны	Максимали	
		Удельные		Удельные				

Взам. инв. №

Подпись и дата

Инв. №подл

Наименование вещества	Выезд / Возврат, км	-	Время прогрев а, мин	Удельные выбросы загрязняю щих веществ при прогреве	выезеде /	е на холосто	выоросы, г/с	выбро , т/год
SO2		0,071		0,013		0,01	0,0006255	0,0046 4
Легковые после ТЕПЛЫЙ ПЕРІ			свыше 1,	8 до 3,5 л (Д	ЦИЗЕЛЬ)	- 380 авт/	/день (38 авт	г/час)
CO	0,05	1,8		0,35	2	0,2	0,01995	0,1374
СН	0,05	0,4	_	0,14	2	0,1	0,0082333	0,0577
NOx		1,9		0,13		0,12	0,009025	0,0687 4
NO2		-	4	_		-	0,00722	0,0549 5
NO		-				-	0,0011733	0,0089 5
С]	0,1]	0,005		0,005		0,0028
SO2		0,25		0,048		0,048	0,0031719	0,023 <i>6</i> 8
ПЕРЕХОДНОЙ	I ПЕРИО,	Ц - 63 дней		1	T	T	T	Т
СО	0,05	1,98		0,477	2	0,2	0,0234072	0,0695 6
СН	0,05	0,45		0,153	2	0,1	0,0088086	0,0253 6
NOx		1,9		0,2		0,12	0,0119806	0,0351 8
NO2		_	6	-		_		0,0281 4
NO		-		-		-	0,0015575	0,0045 9
С		0,135		0,009		0,005	0,0005568	0,001 <i>6</i> 8
SO2		0,2817		0,0522		0,048	0,003366	0,0102 5
холодный г	ІЕРИОД -	150 дней						
CO	0,05	2,2	_	0,53	2	-		0,1789
CH NO:	0,05	0,5	1	$\frac{0.17}{0.2}$	2			0,0644
NOx NO2	-	1,9	1	0,2	_		1	0,0837 0,0670
	1		20				,	0,0070
NO	_	-	_	-			0,00155/5	7
C SO2	_	0,15	_	0,01				0,0042 0,0259
SO2 НОМЕР ИСТО	 ЧНИКА М	0,313 № 6045 CTO	 ЯНКА О	0,058 ТКРЫТАЯ	 		0,0036274	1
HOWILI HOTO	111111/7/	<u>- 0072 CTO</u>	лим О	TKI DITA/I		ILDDA		
	-							
		1 1		000=	1 – ПМО	2000		ر

Взам. инв. №

Подпись и дата

Инв. №подл

таименование г	при пробег 94 г (кроме С Д - 152 дней 95 4,9 95 0,7 3,4 - - 0,2 0,475 ЕРИОД - 63 д	няю Віпта а, ге СНГ) сві	ремя рогрев мин	веществ при прогреве	ю хх пр выезеде возврате , мин	холосто е м ходу	Максимально разовые выбросы, г/с ть (2 авт/час 0,0040472 0,0017972 0,0013911 0,0002261 6,889E-05 0,0003465 0,0050808 0,0019067	одото 0,0153 1 0,0068 9 0,0076 8 0,0009 3 0,0002 6 0,0076 1 0,0029 4
Трузовые после 199 ЕПЛЫЙ ПЕРИОД СО 0,0 СН 0,0 ПО 0 ПО 0 ПЕРЕХОДНОЙ ПЕРООД ПО 0 ПО 0 <	зврат, щих вещестри пробег 94 г (кроме 0Д - 152 дней 155 4,9 15 0,7 3,4 - 152 дней 15 5,31 15 0,72	пр а, пр адней	огрев мин	щих веществ при прогреве до 16 т (Д 1,34 0,59 0,51 - 0,019 0,1 1,8 0,639	выезеде возврате, мин (ИЗЕЛЬ) -	0,84 0,42 0,46 - - 0,019 0,84	ль (2 авт/час пь (2 авт/час пь (2 авт/час пь (2 авт/час пь (2 авт/час пь (2 авт/час принятия приня	одото 0,0153 1 0,0068 9 0,0076 8 0,0009 3 0,0002 6 0,0076 1 0,0029 4
ЕЩЕСТВА КМ Трузовые после 199 ТЕПЛЫЙ ПЕРИОД ОО 0,00 ТН 0,0	вещеси при пробег 94 г (кроме 0 Д - 152 дней 05 4,9 05 0,7 3,4 - 0,2 0,475 ЕРИОД - 63 д 5 5,31 05 0,72	тв а, ге СНГ) сви	мин	веществ при прогреве до 16 т (Д 1,34 0,59 0,51 - - 0,019 0,1	возврате, мин ДИЗЕЛЬ) - 2 2	е м ходу 11 авт/ден 0,84 0,42 0,46 0,019 0,1	г/с 0,0040472 0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0153 1 0,0063 9 0,0076 8 0,0056 7 0,0003 3 0,0003 6 0,0014
СО 0,0: СН 0,0: ПОХ ПОО ПОО ПОО ПОО ПОО ПОО ПО	пробег 94 г (кроме С Д - 152 дней 95 4,9 95 0,7 3,4 - - 0,2 0,475 ЕРИОД - 63 д 95 0,72	цней	ыше 8	прогреве до 16 т (Д 1,34 0,59 0,51 - - 0,019 0,1	дизель) - 2 2 2	м ходу 11 авт/ден 0,84 0,42 0,46 0,019 0,1	0,0040472 0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0153 1 0,0063 9 0,0076 8 0,0056 7 0,0002 6 0,0076 1 0,0029 4
СО 0,0: СН 0,0: ПОХ ПОО ПОО ПОО ПОО ПОО ПОО ПО	пробег 94 г (кроме С Д - 152 дней 95 4,9 95 0,7 3,4 - - 0,2 0,475 ЕРИОД - 63 д 95 0,72	цней	ыше 8	прогреве до 16 т (Д 1,34 0,59 0,51 - - 0,019 0,1	2 2 2 2	0,84 0,42 0,46 - - 0,019 0,1	0,0040472 0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0153 1 0,0063 9 0,0076 8 0,0056 7 0,0002 6 0,0076 1 0,0029 4
СО 0,0: СН 0,0: ПОХ ПОО ПОО ПОО ПОО ПОО ПОО ПО	94 г (кроме 0 Д - 152 дней 95 4,9 95 0,7 3,4 - 0,2 0,475 ЕРИОД - 63 д 95 5,31	цней	ыше 8	ло 16 т (Д 1,34 0,59 0,51 - 0,019 0,1 1,8 0,639	2 2 2 2	0,84 0,42 0,46 - - 0,019 0,1	0,0040472 0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0153 1 0,0063 9 0,0076 8 0,0056 7 0,0002 6 0,0076 1 0,0029 4
CO 0,00 CH 0,00 NO2 NO2 ПЕРЕХОДНОЙ ПЕ CO 0,00 CH 0,00 NO2 NO2 NO CH 0,00 CH 0,00 NO2	95 4,9 95 0,7 3,4 - - 0,2 0,475 ЕРИОД - 63 2 95 5,31	дней		0,59 0,51 - 0,019 0,1 1,8 0,639		0,42 0,46 - - 0,019 0,1	0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0063 9 0,0076 8 0,0056 7 0,0002 6 0,0076 1 0,0029 4
СН 0,0: NO2 NO2 ПО 0,0: П	0,5 0,7 3,4 - 0,2 0,475 ЕРИОД - 63 д 0,5 5,31	дней		0,59 0,51 - 0,019 0,1 1,8 0,639		0,42 0,46 - - 0,019 0,1	0,0017972 0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	0,0063 9 0,0076 8 0,0056 7 0,0002 6 0,0076 1 0,0029 4
NOX NO2 NO DO2 DO2 DEPEXOДНОЙ ПЕ CO 0,0: NOX NO2 DO2 DO3	3,4 - - 0,2 0,475 ЕРИОД - 63 д 05 5,31	дней		0,51 - - 0,019 0,1 1,8 0,639		0,46 - - 0,019 0,1	0,0017389 0,0013911 0,0002261 6,889E-05 0,0003465	9 0,0076 8 0,0056 7 0,0009 3 0,0002 6 0,0076 1 0,0029 4
NO2 NO2 NO CO O,0: CH O,0: NOx NO2 NO CO CO CO O,0: C	0,2 0,475 ЕРИОД - 63 д 05 5,31 05 0,72	дней		- 0,019 0,1 1,8 0,639		- 0,019 0,1 0,84	0,0013911 0,0002261 6,889E-05 0,0003465	8 0,0056 7 0,0009 3 0,0002 6 0,0014 0,0029 4
NO 2 102 1EPEXOДНОЙ ПЕ 2O 0,0 2 NO	0,475 ЕРИОД - 63 д 05 5,31 05 0,72	дней		0,1 1,8 0,639		0,1	0,0002261 6,889E-05 0,0003465 0,0050808	0,0076 1 0,0029 4
O2 IEPEXОДНОЙ ПЕСО 0,0: OX NO2 NO2 SO2 CO 0,0: CO 0,0: CO 0,0: CO 0,0: CO 0,0: CO 0,0:	0,475 ЕРИОД - 63 д 05 5,31 05 0,72			0,1 1,8 0,639		0,1	6,889E-05 0,0003465 0,0050808	3 0,0002 6 0,0014 0,0076 1 0,0029 4
O2 ПЕРЕХОДНОЙ ПЕ ОО 0,0: ОО 0,0: ОО 0,0: ОО 0,0: ОО 0,0: ОО	0,475 ЕРИОД - 63 д 05 5,31 05 0,72			0,1 1,8 0,639		0,1	0,0003465	0,0014 0,0076 1 0,0029
IEPEXOДНОЙ ПЕСО 0,0: CH 0,0: NOx NO2 NO CO 0,0: CO 0,0: CO 0,0: CO 0,0: CO 0,0:	ЕРИОД - 63 д 95 5,31 95 0,72			1,8		0,84	0,0050808	0,0014 0,0076 1 0,0029 4
CO 0,0. CH 0,0. NOx NO2 NO CO 0,0. CO 0,0. CO 0,0.	5,31 05 0,72			0,639				0,0029 4
OH 0,0: NOX NO2 NO CO CO O,0: O,0:	05 0,72			0,639				0,0029 4
NOx NO2 NO SO2 КОЛОДНЫЙ ПЕР		6			2	0,42	0,0019067	4
NO2 NO C SO2 CO CO O,0	3,4	6		0,77			Î	1_
O2 СОЛОДНЫЙ ПЕР СО 0,0	-	6				0,46	0,0023167	0,0036
CO СОЛОДНЫЙ ПЕР СО 0,0	1	U		-		-	0,0018533	0,0029
002 СОЛОДНЫЙ ПЕР СО 0,0	_			-		-	0,0003012	0,000 ² 9
СОЛОДНЫЙ ПЕР СО 0,0:	0,27			0,0342		0,019	0,0001046	0,0001 2
CO 0,0	0,531			0,108		0,1	0,0003659	0,0006 4
	ИОД - 150 д	ней		T	ı		1	
CH 0,0	5,9			2	2	0,84	0,0055417	0,0197 5
	0,8			0,71	2	0,42	0,0020667	0,0075
JOx	3,4			0,77		0,46	0,0023167	0,0086
NO2	_	20)	-		-	0,0018533	0,0069 2
10	-		•	-		-	0,0003012	0,0011 3
	0,3			0,038		0,019	0,0001139	0,000 ²
O2	0,59			0,12		0,1	0,0003942	0,0015 4
 								
 				000	5.1 – ΠM	0000		

Взам. инв. №

Подпись и дата

Инв. №подл

Наименование		Удельные выбросы загрязняю	Время	Удельные выбросы загрязняю	Время хх при	Удельны е на	Максималь но разовые	
вещества	Возврат, км	веществ при пробеге	прогрев а, мин	щих веществ при прогреве	выезеде / возврате , мин	холосто м ходу	выбросы, г/с	выбр , т/го
НОМЕР ИСТО Грузовые после							(2 opt/1100)	
т рузовые после ТЕПЛЫЙ ПЕРІ			свыше о	до то г (диг	<u> </u>	о авт/деп	ь (2 авт/час)	
СО	0,05	4,9		1,34	2	0,84	0,0040472	0,013 2
СН	0,05	0,7		0,59	2	0,42	0,001/9/2	0,006 2
NOx		3,4		0,51		0,46	0,001/389	0,006 4
NO2		_	4	_		_	0,0013911	0,005 5
NO		_		_		-	0,0002261	0,000 9
С		0,2		0,019		0,019	6,889E-05	0,000 4
SO2		0,475		0,1		0,1	0,0003465	0,001 2
ПЕРЕХОДНОЙ	<u>і ПЕРИО,</u>	Д - 63 дней		1	1		 	
СО	0,05	5,31		1,8	2	0,84	0,0050808	0,006 3
СН	0,05	0,72		0,639	2	0,42		0,002
NOx		3,4		0,77		0,46	0,0023167	0,003 8
NO2		-	6	-		_		0,002
NO		_		-		-	0,0003012	0,000 8
С		0,27		0,0342		0,019	0,0001046	0,000 1
SO2		0,531		0,108		0,1	0.0003659 1	0,000 6
ХОЛОДНЫЙ Г			1	la	la la	0.04	0.0055415	0.015
CO	0,05	5,9	-	2	2	0,84	1	0,017
CH NOx	0,05	0,8 3,4	-	0,71 0,77	2	0,42 0,46	,	$\frac{0,006}{0,007}$
NO2		J, T	-	-	1	-	1	0,007
NO	_	_	20	_		-	ļ <u></u>	0,001 7
C		0,3	-	0,038		0,019	0,0001139	0,000
SO2		0,59		0,12		0,1	0,0003942	0,001 5
НОМЕР ИСТО Грузовые после							(1 авт/час)	
		-					. ,	
+ + +		+		9035.	1 – ПМ(OOC 3		
ı. Кол.уч. Лист №	док. Подпис	ь Дата						

Взам. инв. №

Подпись и дата

Инв. № подл

Наименование вещества	Выезд Возврат, км	Удельные выбросы загрязняю щих веществ при пробеге	Время прогрев а, мин	Удельные выбросы загрязняю щих веществ при прогреве	Время хх при выезеде / возврате , мин	с на Холосто	Максималь но разовые выбросы, г/с	Валон выбро , т/год	осы
ТЕПЛЫЙ ПЕРІ	ИОД - 152	2 дней		1	<u> </u>		T		
СО	0,05	4,9		1,34	2	0,84	0,0020236	0,009 4	799
СН	0,05	0,7		0,59	2	0,42	0,0008986	0,004	
NOx		3,4		0,51		0,46	0,0008694	0,004 1	490
NO2		_	4	-		-	0,0006956	0,003 1	592
NO		_		-		-	0,000113	0,000 7	583
C		0,2		0,019		0,019	3,444E-05	0,000	183
SO2		0,475		0,1		0,1	0,0001733	0,000 7	90
ПЕРЕХОДНОЙ	і ПЕРИО,	Д - 63 дней						ļ′	
СО	0,05	5,31		1,8	2	0,84	0,0025404	0,004 1	89
СН	0,05	0,72		0,639	2	0,42	0,0009533	0,001 8	89
NOx		3,4		0,77		0,46	0,0011583	0,002	31
NO2	_	-	6	-		-	0,0009267	0,001 7	85:
NO		_		-		_	0,0001506	0,000 6	30
С		0,27		0,0342		0,019	5,231E-05	0,000 8	10:
SO2		0,531		0,108		0,1	0,0001829	0,000	39
холодный г	ІЕРИОД	- 150 дней						<u> </u>	
СО	0,05	5,9		2	2	0,84	0,0027708	0,012 5	54
СН	0,05	0,8		0,71	2	0,42	0,0010333	0,004	83
NOx	_	3,4		0,77	_	0,46	0,0011583	0,005	
NO2		-	20	-		-	0,0009267	0,004 4	41
NO		-		-		_	0,0001506	0,000	
С		0,3		0,038		0,019	5,694E-05	0,000 9	27
SO2		0,59		0,12		L	0,0001971	0,000	98
НОМЕР ИСТО Легковые пославт/час)							ICK - 70 ав	т/дені	ь (
		\Box		9035	1 – ПМО)OC 3			Ли
				7000.	11111	, U U J		H	16

Взам. инв. №

Подпись и дата

Инв. №подл

Наименование вещества	Возврат, км	веществ при пробеге	Время прогрев а, мин	Удельные выбросы загрязняю щих веществ при прогреве	Время хх при выезеде / возврате , мин	с на холосто	Максималь но разовые выбросы, г/с	Валовыю выбрось , т/год		
ТЕПЛЫЙ ПЕР	ИОД - 152	2 дней	1	ı	1	1	1	1		
СО	0,05	9,3		2,9	2	1,9	0,0252097	0,18332′ 2		
СН	0,05	1,4		0,18	2	0,15	0,0017694	0,01361 <u>9</u> 2		
NOx		0,24		0,03		0,03	0,000315	0,002489 8		
NO2		_	3	-		_	0,000252	0,00199 8		
NO		_		-		-	4,095E-05	0,000323 7		
С		0		0		0	0	0		
SO2		0,057		0,011		0,01	0,0001086	0,00083′ 4		
ПЕРЕХОДНОЙ	<u>і́ ПЕРИО,</u>	Д - 63 дней	T		T	1	T	lo . o . o .		
СО	0,05	10,53	-	5,13	2	1,9	0,0383376	0,106029 6		
СН	0,05	1,89		0,243	2	0,15	0,0021846	0,006694 4		
NOx		0,24		0,04		0,03	0,0003733	0,00116 ₄ 2		
NO2		-	4	-		-	0,0002987	0,000931 4		
NO		-		-		-	4,853E-05	0,00015 4		
С		0]	0		0	0	0		
SO2		0,0639		0,0117		0,01	0,0001134	0,000359 4		
холодный г			T	T	T ₋	I	la a 			
CO	0,05	11,7	-	5,7	2	+ -	-	0,27163		
CH NOx	0,05	2,1 0,24	_	0,27 0,04	1			0,01701 0,002772		
NO2	_	-	-	-	_		-	0,00277		
NO		-	10	-		-	4,853E-05	0,000360		
C	1	0	1	0	1	0	0	0		
SO2		0,071	1	0,013		0,01	0,0001216	0,000904 1		
Легковые после 1994 г (кроме СНГ) свыше 1,8 до 3,5 л (ДИЗЕЛЬ) - 82 авт/день (8 авт/час)										
ТЕПЛЫЙ ПЕР	ИОД - 152	2 дней ————————————————————————————————————								
								_		
		+		9035.	1 – ПМС	OOC 3		Ли		
вм. Кол.уч. Лист №	док. Подпис	ь Дата						16		

Взам. инв. №

Подпись и дата

Инв. №подл

Лист

163

Наименование вещества	Выезд / Возврат, км	Удельные выбросы загрязняю щих веществ при пробеге	Время прогрев а, мин	Удельные выбросы загрязняю щих веществ при прогреве	ROSBNATE	с на холосто	Максималь но разовые выбросы, г/с	Валовы выбрось , т/год
CO	0,05	1,8		0,35		0,2	0,0025333	0,01533 7
СН	0,05	0,4		0,14		0,1	0,0009778	0,00573: 4
NOx		1,9		0,13		0,12	0,0010778	0,00722 1
NO2		-	3	-		-	0,0008622	0,005783 3
NO		-		-		-	0,0001401	0,00093 8
С		0,1		0,005		0,005	4,444E-05	0,00031 6
SO2		0,25		0,048		0,048	0,0003478	0,00210 4
ПЕРЕХОДНОЙ	і ПЕРИО,	Д - 63 дней		1		<u> </u>	<u> </u>	<u> -</u>
СО	0,05	1,98		0,477		0,2	0,0034	0,00841 4
СН	0,05	0,45		0,153		0,1	0,00107	0,00260 7
NOx		1,9		0,2		0,12	0,0015444	0,00408 1
NO2		_	4	-		_	0,0012356	0,00326 9
NO		_		-		_	0,0002008	0,00053 5
С		0,135		0,009		0,005	0,000075	0,00020 2
SO2		0,2817		0,0522		0,048	0,0003793	0,00095 5
холодный г	ТЕРИОД -	- 150 дней				L	L	<u> </u>
CO	0,05	2,2		0,53		0,2	0,0037778	0,02226
CH	0,05	0,5		0,17		0,1	0,0011889	0,00688
NOx		1,9		0,2		0,12	0,0015444	0,00971
NO2		-		-		-	0,0012356	0,00777 6
NO		_	10	_		-	0,0002008	0,00126 2
С		0,15		0,01		0,005	8,333E-05	0,00055 5
	1	0,313		0,058		0,048	0,0004214	0,00252 2

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

		Удельные		Удельные				
		выбросы		выбросы	Время	Vпептит	Максимон	
Наименование	Выезд	загрязняю	Время	загрязняю	хх при	у дельны	Максималь но разовые	Валог
вещества	Возврат,	щих	прогрев	щих	выезеде /	с на		выбро
вещеетва	КМ	веществ	а, мин	веществ	RO3RN3TE		выоросы, г/с	, т/год
		при		при	, мин	м ходу	170	
		пробеге		прогреве				
Легковые после авт/час)	е 1994 г ((кроме СНГ) свыше	1,8 до 3,5 л	(БЕНЗИН	Н) ВПРЫ	СК - 106 ав	т/дені
ТЕПЛЫЙ ПЕРІ			T	b o	Ь	1.0	0.0100000	0.120
CO	0,05	9,3	4	2,9	2	1,9		0,130
СН	0,05	1,4	4	0,18	2	0,15	0,0012639	0,009
NOx	-	0,24		0,03		0,03	0,000225	0,001 [°] 4
NO2		_	3	_		-	0,00018	0,001 7
NO		-		-		_	2,925E-05	0,000 2
C		0	7	0		0	0	0
SO2	-	0,057		0,011		0,01	7,757E-05	0,000 1
ПЕРЕХОДНОЙ	ПЕРИО,	Д - 63 дней	1	1	1	I	<u>. </u>	I-
СО	0,05	10,53		5,13	2	1,9	0,027384	0,075° 5
СН	0,05	1,89		0,243	2	0,15	0,0015604	0,004 [°] 7
NOx		0,24		0,04		0,03	0,0002667	0,000 6
NO2		_	4	_		_	0,0002133	0,000 3
NO		-		-		-	3,467E-05	0,000 1
C	1	0		0		0	0	0
SO2		0,0639		0,0117		0,01	8,097E-05	0,000 7
холодный г	І ІЕРИОД -	- 150 дней			1			/
CO	0,05	11,7		5,7	2	1,9	0,0298403	0,194
СН	0,05	2,1		0,27	2	0,15	0,0016875	0,012
NOx		0,24	7	0,04		0,03	0,0002667	0,001
NO2	1	-	7	_		_		0,001
NO	1		10				,	0,000
NO]		_]			_	3,467E-05	4
С		0		0		0	0	0
SO2		0,071		0,013		0,01	8,688E-05	0,000 8
Легковые после			свыше 1,	8 до 3,5 л (Д	(ИЗЕЛЬ)	- 62 авт/д	ень (6 авт/ч	ac)
ТЕПЛЫЙ ПЕРІ			2	0.25		0.2	0.0010	0,011
CO	0,05	1,8	3	0,35		0,2	0,0019	5
				0025 1	 1 – ПМО)()(C 2		
				9035.]	ı – 111VI(JUC 3		⊦
	док. Подпис	ь Дата						

Взам. инв. №

Подпись и дата

Инв. №подл

165

		Удельные выбросы		Удельные выбросы	Время	Vлепьны	Максималь		
Наименование		загрязняю	Время	загрязняю	хх при	э дельпы е на	Максималь но разовые		
вещества	Возврат,		прогрев		выезеде /		выбросы,	выор	
ээц ээг	KM	веществ	а, мин	веществ	возврате		г/с	, т/го	Д
		при		при	, мин				
		пробеге		прогреве					
СН	0,05	0,4		0,14		0,1		0,004	
NOx		1,9		0,13		0,12	0,0008083	0,005 9	
NO2		_		-		-	0,0000407	0,004 7	
NO		_		_		-	0,0001051	0,000 6	17
С		0,1		0,005		0,005	5,555E-05	0,000 6	
SO2		0,25		0,048		0,048	0,0002608	0,001 7	.59
ПЕРЕХОДНОЙ	́1 ПЕРИО,	Д - 63 дней							
СО	0,05	1,98		0,477		0,2	0,00233	0,006 9	
СН	0,05	0,45		0,153		0,1	0,0008023	0,001 6	
NOx		1,9		0,2		0,12	0,0011383	0,003 7	
NO2		_	4	-		-	0,0009267	0,002 6	
NO		_		-		-	0,0001306	0,000 1	
С		0,135		0,009		0,005	5,623E-03	0,000 2	
SO2		0,2817		0,0522		0,048	0,0002845	0,000 7	172
ХОЛОДНЫЙ І	ІЕРИОД	- 150 дней							
CO	0,05	2,2		0,53		0,2	0,0028333	0,016	58.
СН	0,05	0,5		0,17		0,1	0,0008917	0,005	520
NOx		1,9		0,2		0,12	0,0011583	0,007	134
NO2		_		-		-	-	0,005 6	_
NO			10	-		_	0,0001506	0,000 1	19:
С		0,15		0,01		0,005	0,0000625	0,000 5)4
SO2		0,313		0,058		0,048	U.UUU.5 LO L	0,001 3	9
НОМЕР ИСТО	ЧНИКА Ј	№ 6050 CTC	О АЗНКО	ТКРЫТАЯ	БЕЗ ОБО	ГРЕВА			
Грузовые после	е 1994 г (н	кроме СНГ)	свыше 8	до 16 т (ДИ	3 ЕЛЬ) - 1	0 авт/ден	ь (2 авт/час))	
ТЕПЛЫЙ ПЕР				V 1					_
	7 10	r1							
+				9035.	1 – ПМО	OOC 3			Л
									Ι.

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

Лист

166

Наименование вещества	Выезд / Возврат, км	Удельные выбросы загрязняю щих веществ при пробеге	Время прогрев а, мин	Удельные выбросы загрязняю щих веществ при прогреве	Время хх при выезеде / возврате , мин	с на холосто	Максималь но разовые выбросы, г/с	Валовые выбрось , т/год
СО	0,05	4,9		1,34	2	0,84	0,0040472	0,013999 2
СН	0,05	0,7		0,59	2	0,42	0,0017972	0,00624´ 2
NOx		3,4		0,51		0,46	0,0017389	0,006414 4
NO2		-	4	-		_	0,0013911	0,00513
NO		-		-		_	0,0002261	0,000833
С		0,2		0,019		0,019	6,889E-05	0,00026
SO2		0,475		0,1		0,1	0,0003465	0,00128
ПЕРЕХОДНОЙ	І ПЕРИО,	Д - 63 дней		ı				
СО	0,05	5,31		1,8	2	0,84	0,0050808	0,00698
СН	0,05	0,72		0,639	2	0,42	0,0019067	0,00271
NOx		3,4		0,77		0,46	0,0023167	0,00331 8
NO2		_	6	-		_	0,0018533	0,00265
NO		-		-		_	0,0003012	0,00043 8
С		0,27		0,0342		0,019	0,0001046	0,00015 1
SO2		0,531		0,108		0,1	0,0003659	0,00055 6
холодный г	ІЕРИОД -	- 150 дней		·	- .			
CO	0,05	5,9	_	2	2		0,0055417	0,01792
CH	0,05	0,8	_	0,71	2		0,0020667	0,0069
NOx NO2	_	3,4	_	0,77			0,0023167	0,00789
NO2		_	20	-			0,0018533	0,00631 $0,00102$
NO		-		-		-	0,0003012	7
С		0,3		0,038		0,019	0,0001139	0,00038
SO2		0,59		0,12		0,1	0,0003942	0,00140 5
ИТОГО ПО ВС	ЕМ ИСТ	ОЧНИКАМ	:					1
СО							0,3402347	4,46147 9
СН							0,0350667	0,49041

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

наименование вещества	Выезд Возврат, км	щих	Время прогрев а, мин	загрязняю	выезеде / возврате	с на холосто	Максималь но разовые выбросы, г/с	Валовые выбросы , т/год
Бензин							0,0162	0,255933 1
Керосин							0,0188667	0,234484 1
NOx							0,0253517	0,335655 3
NO2							0,0202813	0,268524 2
NO							0,0032957	0,043635 2
С							0,0011514	0,013751 6
SO2							0,0065785	0,096427 1

12. Расчет выбросов загрязняющих веществ в атмосферу при движении тепловоза по ж.д. путям (Источники №6051-6055)

Расчет выбросов вредных веществ выполнен по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом).

Расчет выбросов вредных веществ (Gij, кг) с отработавшими газами тепловозов определяется в соответствии с методикой:

$$G_{ij} = \sum_{k=1}^{n} q_{ijk} \cdot T_k \cdot T \cdot K_f \cdot K_t \tag{18}$$

где Gij – общая масса i-го вещества, выброшенного j-тым двигателем при работе на k-том режиме;

qijk – удельный выброс i-го загрязняющего вещества при работе j-го двигателя на k-том режиме (кг/ч);

n – число режимов двигателя;

Согласовано

Tk – доли времени работы двигателя на k-том режиме;

Т – суммарное время работы тепловоза (в сутки, месяц, год), ч;

Kf — коэффициент влияния технического состояния тепловозов, принимается в соответствии с «Временными нормами и методами определения удельных выбросов загрязняющих веществ в атмосферу с отработавшими газами дизелей эксплуатируемых тепловозов» равным 1,2 для тепловозов со сроком эксплуатации более двух лет;

Kt- коэффициент влияния климатических условий работы тепловоза, принимается с учетом «Методики расчета концентрации в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86 для районов, расположенных севернее 60° северной широты равным 1.

	CODO		P = -	p	
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

Лист

168

Расчет выбросов углеводородов (керосин) и диоксид серы (SO2) произведен по удельным показателям выделения этих веществ, приведенным в таблице 5.13.1 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта (расчетным методом)», 1992 г.

В случае если время прохождения участка менее 20 минут, то расчетом предусматривается осреднение максимально разовых выбросов к 20-30-минутному периоду времени в соответствии с ОНД-86 п.п. 2.3, примечание 1.

Максимально разовый выброс загрязняющих веществ с нагрузкой определяется по формуле:

$$G_{iH} = g_{iH}^0 \cdot N_{M, \Gamma/C} \tag{1}$$

где g_{iH}^0 - удельный выброс і-го загрязняющего вещества, г/кВт*сек (табл. 5.13.1),

 $N_{\scriptscriptstyle M}$ - максимальная мощность, кВт.

Валовые выбросы загрязняющих веществ определяются по формуле:

$$Mi = \frac{C_i \cdot B \cdot \alpha + C_i^1 (1 - \alpha) \cdot B}{10^3}, \text{ кг/год}$$
(20)

где Сі - удельное выделение загрязняющих веществ (на холостом ходу), г/кг топлива;

 \mathbf{C}^{i} - удельное выделение загрязняющих веществ при работе двигателя с нагрузкой, г/кг топлива;

В - годовой расход дизельного топлива, кг/год;

 α - доля работы двигателя на холостом ходу.

Исходные данные для расчетов, максимальные разовые и валовое количество выбросов загрязняющих веществ, поступающих в атмосферу приведены в таблице 16.

T-6-777	1	4
таоли	เกล เ	h

Лист

№ док. Подпись

Согласовано

Наименование	Удельные	выбросы	на режи	мах работ	гы, кг/час	Максимально	Валовые
веществ	(CH, SO2 - 1	I/KDI CCK	, B SHAMCH	ателе г/кг	топливај	разовые, г/с	выбросы,
вещееть	XX	25%	50%	75%	100%	разовые, 17с	т/год
НОМЕР ИСТОЧНИ	IKA № 6051	длина - 1	,2 км (Kf=	= 1)			
Промышленный (Т				мя работь	в год - 2	2 часов. Годо	вой расход
топлива - 2628 кг. С	Скорость - 2	0 км/ч (Кт	r = 1,2			T	
NO2	1,5	2,99	5,24	6	7,02	0,004488	0,047393
NO	_	_	=	=	=	0,000729	0,007701
Сажа	0,01	0,06	0,17	0,22	0,23	0,000098	0,001035
SO2	0,00015 12	-	_	-	0,0008 10	0,0033	0,029891
СО	0,64	0,76	0,93	1,28	2,63	0,001789	0,018888
Керосин	0,0007 60	_	_	_	0,0036 50	0,01485	0,149454
Время работы в режимах, %	68,7	20,1	8,9	1,5	0,8		
Распределение времени, сек	148,39	43,42	19,22	3,24	1,73		
НОМЕР ИСТОЧНИ	IKA № 6052	2 длина - 1	,4 км (Kf=	= 1)			
Промышленный (Т	ГМ4 (550 к	Вт) 1 сек	ций) Вре	мя работь	в год - 2	6 часов. Годог	вой расход
топлива - 3066 кг. С	скорость - 20	0 км/ч (Кт	r = 1,2				
NO2	1,5	2,99	5,24	6	7,02	0,005236	0,05601
NO	_	-	-	-	-	0,000851	0,009102
	_	_					

 $9035.1 - \Pi MOOC 3$

169

Наименование	Удельные (СН SO2	выбросі	ы на реж	кимах ра	боты, кг/ча кг топлива)	с Максималы	выбро	
веществ	XX	25%	50%	75%	100%	разовые, г/с	выоро т/год	νы,
Сажа	0,01	0,06	0,17	0,22	0,23	0,000114	0,0012	23
SO2	0,00015 12	-	-	-	0,0008 10	0,00385	0,0348	
CO	0,64	0,76	0,93	1,28	2,63	0,002087	0,0223	22
Керосин	0,0007 60	_	-	-	0,0036 50	0,017325	0,1743	
Время работы режимах, %	^B 68,7	20,1	8,9	1,5	0,8			
Распределение времени, сек	173,12	50,65	22,43	3,78	2,02			
НОМЕР ИСТОЧН								
Промышленный (ремя рабо	оты в год -	16 часов. Год	цовой рас	CXC
топлива - 1752 кг.	1				5 .00	la 00000	0.0244	
NO2	1,5	2,99	5,24	6	7,02	0,002992	0,0344	
NO	- 0.01	-	0.17	-	- 0.22	0,000486	0,0056	
Сажа	0,01	0,06	0,17	0,22	0,23	6,53E-05	0,0007	53
SO2	0,00015 12	-	-	_	0,0008 10	0,0022	0,0199	27
CO	0,64	0,76	0,93	1,28	2,63	0,001192	0,0137	37
Керосин	0,0007 60	_	_	-	0,0036 50	0,0099	0,0996	36
Время работы режимах, %	^B 68,7	20,1	8,9	1,5	0,8			
Распределение времени, сек	98,93	28,94	12,82	2,16	1,15			
НОМЕР ИСТОЧН	ИКА № 605	54 длина -	- 1,3 км (К	(f=1)				
Промышленный (топлива - 5694 кг.				ремя рабо		48 часов. Год	цовой рас)X(
NO2	1,5	2,99	5,24	6	7,02	0,009724	0,1034	04
NO	-	-	-	-	-	0,00158	0,0168	03
Сажа	0,01	0,06	0,17	0,22	0,23	0,000212	0,0022	58
SO2	0,00015 12	_	_	-	0,0008 10	0,00715	0,0647	64
CO	0,64	0,76	0,93	1,28	2,63	0,003875	0,0412	1
Керосин	0,0007 60	-	_	-	0,0036 50	0,032175	0,3238	18
Время работы режимах, %	^B 68,7	20,1	8,9	1,5	0,8			
Распределение времени, сек	321,52	94,07	41,65	7,02	3,74			
НОМЕР ИСТОЧН	ИКА № 603	55 длина -	- 0,4 км (К	f=1				_
Промышленный (` `	,	,	Время раб	оты в год -	8 часов. Год	овой <u>ра</u> с	CX
топлива - 876 кг. (NO2	Скорость - 2 1,5	<u>0 км/ч (К</u> 2,99	$\frac{T = 1,2)}{5,24}$	6	7,02	0,001496	0,0172	34
								_
+				9035.1	– ПМОО	 C 3		л
						-		Г.

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

Наименование	ICTI. DOZ = I/KDT CCK. B SHAWCHATCHC I/KL TOHHUBAT T					Максимально	Валовые выбросы,
веществ	`			75%	100%	разовые, г/с	выоросы, т/год
NO	_	_	-	-	_	0,000243	0,002801
Сажа	0,01	0,06	0,17	0,22	0,23	3,27E-05	0,000376
SO2	0,00015 12	-	-	-	0,0008 10	0,0011	0,009964
CO	0,64	0,76	0,93	1,28	2,63	0,000596	0,006868
Керосин	0,0007 60	-	-	_	0,0036 50	0,00495	0,049818
Время работы в режимах, %	68,7	20,1	8,9	1,5	0,8		
Распределение времени, сек	49,46	14,47	6,41	1,08	0,58		
ИТОГО ПО ВСЕМ	ИСТОЧНИ	KAM:					
NO2						0,023936	0,25851
NO						0,00389	0,042008
Сажа						0,000523	0,005645
SO2						0,0176	0,159418
CO						0,009539	0,103025
Керосин						0,0792	0,79709

13. Расчет выбросов загрязняющих веществ в атмосферу при работе автомобильного транспорта на открытом складе готовой продукции (Источник №6056)

Количество загрязняющих веществ, поступающих в атмосферу при работе строительной техники, рассчитано по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г., «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г. и «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Валовый выброс загрязняющих веществ, поступающих в атмосферу при работе дорожной техники, рассчитывается по формуле:

$$M_{i} = \left[\sum_{k=1}^{k} (M_{ik}^{/} + M_{ik}^{//}) + \sum_{k=1}^{k} (M_{\partial eik} \cdot t_{\partial e}^{/} + 1,3M_{\partial eik} \cdot t_{naep}^{/} + M_{xxik} \cdot t_{xx}^{/}) \cdot 10^{-6}\right] \cdot D_{\phi},$$
(21)

где: $M_{ik}^{'}, M_{ik}^{''}$ — выбросы при выезде и въезде с территории площадки (стоянки в пределах стройплощадки), формулы 2,1 и 2,2 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» и «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)»;

 $t_{\partial s}^{'}$ — суммарное время движения без нагрузки всей техники данного типа в течении рабочего дня, мин;

<u> </u>					
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

9035.1 – ПМООС 3

Лист

 $t_{\text{нагр}}^{\prime}$ — суммарное время движения с нагрузкой всей техники данного типа в течении рабочего дня, мин;

 t_{xx}^{\prime} — суммарное время холостого хода для всей техники данного типа, в течении рабочего дня, мин;

При этом согласно «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» для перевода величины удельного выброса загрязняющего вещества «mL, (г/км)» из таблиц 2.8 и 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» следует величину «mL» умножать на рабочую скорость автотранспортных средств.

Удельные выбросы для автотранспортных средств приняты в соответствии с таблицей 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» — для автомобилей выпуска после 01.01.94г.

Исходные данные и результаты расчета приведены в таблице 17

Таблина 17

Согласовано

Наименован ие вещества	движения без нагрузки,		Comment,	Удельные при пробеге	хх, мин	е на	Максимальн о разовые выбросы, г/с	выбросы,
НОМЕР ИСТ	ОЧНИКА	№ 6056						
Автомобили-	самосвалы	(дизель) в	ыпуска пос	ле 1994 го	да (4 авт	учас)		
СО				7,2		1,03	0,088511	2,791286 4
СН				1		0,57	0,006333	0,199728
NOx				3,9		0,56	0,047967	1,512676 8
NO2	12	13	10	-	5	-	0,038373	1,210141 4
NO				_		_	0,006236	0,196648
С				0,45		0,023	0,005072	0,159957 6
SO2				0,86		0,112	0,009461	0,298353 9

14. Расчет выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ (Источники №58, 59)

Расчет выбросов загрязняющих веществ выполнен по ГОСТ Р 56164-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей», Москва, 2015 г. (на основе удельных показателей), исходя из расхода электродов и удельных выбросов загрязняющих веществ.

$$M_{bi} = BK_{\rm T}^{\chi} \cdot 10^{-3} (1 - \eta) \tag{22}$$

где В – расход применяемых сырья и материалов, кг/ч;

ı '	13141.	NOJI.YA.	315101	i ч≞ дОк.	подпись	дата
u	ЛЗМ	Коп уч	Пист	№ лок	Подпись	Пата

 $K_{\rm T}^{\chi}$ – удельный показатель выделяемого в атмосферу загрязняющего вещества х на единицу массы расходуемых (приготавливаемых) сырья и материалов, г/кг;

 η — степень очистки воздуха в аппарате, входящем в группу технологических агрегатов. Удельные выбросы загрязняющих веществ, поступающих в атмосферу при сварке электродами УОНИ 13/45, приведены в таблице 18.

Таблица 18

L_	Удельный выброс загрязняющих веществ,
Наименование загрязняющих веществ	поступающих в атмосферу при сварке металла, г/кг
Сварочный аэрозоль всего, в том числе:	16,4
Железа оксид	10,69
Марганец и его соединения	0,92
Пыль неорганическая, содержащая SiO2 (20-70%)	1,4
Фториды неорганические плохо растворимые	0,75
Азота диоксид	1,5
Углерода оксид	13,3

Для выполнения сварочных работ расход электродов марки УОНИ 13/45 составит 5кг/час и 1825 кг/год. Степень очистки 99,5%

Расчет валоввых выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ приведен в таблице 19.

Таблица 19

Согласовано

읟

Наименование загрязняющих	Количество загрязняющих веществ,	После
веществ	поступающих в атмосферу при сварке, т	очистки, т/год
Сварочный аэрозоль, в том числе:	$16,4 \cdot 1825 \cdot 10 - 6 = 0,02993$	0,00014965
Железа оксид	$10,69 \cdot 1825 \cdot 10-6 = 0,019509$	9,75463E-05
Марганец и его соединения	$0.92 \cdot 1825 \cdot 10-6 = 0.001679$	8,395E-06
Пыль неорганическая, содержащая SiO2 (20-70%)	$1,4 \cdot 1825 \cdot 10-6 = 0,002555$	0,000012775
Фториды неорганические плохо растворимые	$0.75 \cdot 1825 \cdot 10-6 = 0.001369$	6,84375E-06
Азота диоксид	$1,5 \cdot 1825 \cdot 10 - 6 = 0,002738$	0,002738
Углерода оксид	$13,3 \cdot 1825 \cdot 10-6 = 0,024273$	0,024273

Расчет максимально разовых выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ приведен в таблице 20.

Таблина 20

таолица 20		
Наименование загрязняющих веществ	Количество загрязняющих веществ,	После
паименование загрязняющих вещеетв	поступающих в атмосферу при сварке, г/с	очистки, г/с
Сварочный аэрозоль всего в том числе:	$16,4 \cdot 5 \cdot /3600 = 0,022778$	0,000114
Железа оксид	$10,69 \cdot 5 \cdot /3600 = 0,014847$	7,42E-05
Марганец и его соединения	$0.92 \cdot 5 \cdot /3600 = 0.001278$	6,39E-06
Пыль неорганическая, содержащая SiO2 (20-70%)	$1,4 \cdot 5 \cdot /3600 = 0,001944$	9,72E-06
Фториды неорганические плохо	$0.75 \cdot 5 \cdot /3600 = 0.001042$	5,21E-06
растворимые		0,002083
Азота диоксид	· · · · · · · · · · · · · · · · · · ·	
Углерода оксид	$13,3 \cdot 5 \cdot /3600 = 0,018472$	0,018472

И:	3М.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

Удельные выбросы загрязняющих веществ, поступающих в атмосферу при сварке проволокой Св-0,81Г2С, приведены в таблице 21.

Таблина 21

Наименование загрязняющих веществ	Удельный выброс загрязняющих веществ, поступающих в атмосферу при сварке металла, г/кг
Сварочный аэрозоль всего, в том числе:	10
Железа оксид	7,67
Марганец и его соединения	1,9
Пыль неорганическая, содержащая SiO2 (20-70%)	0,43

Для выполнения сварочных работ расход проволоки марки Св-0,81 Γ 2C составит 5кг/час и 1825 кг/год. Степень очистки 99,5%

Расчет валоввых выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ приведен в таблице 22.

Таблица 22

Согласовано

읟

Взам.

Подпись и дата

Наименование загрязняющих	Количество загрязняющих веществ,	После
веществ	поступающих в атмосферу при сварке, т	очистки, т/год
Сварочный аэрозоль, в том числе:	$10 \cdot 1825 \cdot 10 - 6 = 0,01825$	9,13E-05
Железа оксид	$7,67 \cdot 1825 \cdot 10-6 = 0,01399775$	7E-05
		1,73E-05
Пыль неорганическая, содержащая SiO2 (20-70%)	$0,43 \cdot 1825 \cdot 10-6 = 0,00078475$	3,92E-06

Расчет максимально разовых выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ приведен в таблице 23. Таблица 23

House on the company of the company	Количество загрязняющих веществ,	После
Наименование загрязняющих веществ	поступающих в атмосферу при сварке, г/с	очистки, г/с
Сварочный аэрозоль всего в том числе:	$10 \cdot 5 \cdot /3600 = 0,013888889$	6,94444E-05
Железа оксид	$7,67 \cdot 5 \cdot /3600 = 0,010652778$	5,32639E-05
Марганец и его соединения	$1,9 \cdot 5 \cdot /3600 = 0,002638889$	1,31944E-05
Пыль неорганическая, содержащая SiO2 (20-70%)	$0,43 \cdot 5 \cdot /3600 = 0,000597222$	2,98611E-06

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Итоговые выбросы с учетом 20-минутного осреднения по источникам №58, 59 представлены в таблице 24.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Таблица 24

	u <i>L</i> I		1
Ко	Название вещества	г/с	т/год
123	INCIICSO/T/ICCIICSO/CCCRDIIORCII/LI	-	0,00017
143	Марганец и его соединения/в пересчете на марганец (IV) оксид/	6,67E-06	2,6E-05
301	Азота диоксид (Двуокись азота; пероксид азота)	6,93E-04	0,00274
337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)		0,02427
344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)	1,73E-06	6,8E-06
2908	Пыль неорганическая, содержащая двуокись кремния, в %: -	4,33E-06	1,7E-05

15. Расчет выбросов загрязняющих веществ, поступающих в атмосферу при выполнении газовой резки металлов (Источник №60).

Расчёт проведен согласно ГОСТ Р 56164-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей», Москва, 2015 г.;

Исходные данные.

Технологическая операция: Газовая резка

Используемый металл: Сталь углеродистая Толщина листов: 10 [мм.]

Степень очистки 99,5%

Удельные выделения загрязняющих веществ представлены в таблице 25.

Таблица 25

Согласовано

읟

Код	Название вещества	Yi [г/ч]	
0143	Марганец и его соединения	1,9	
0123	Железа оксид	129,1	
0337	Углерода оксид	63,4	
0301	Азота диоксид	64,1	

Время работы за период (Т): 1460 час

Расчётные формулы:

Мвал. =Yi*T/1000000 [т/год] (23)

Результаты расчётов валовых выбросов представлены в таблице 26.

Таблица 26

Код	Название вещества	Выброс, т	После
			очистки, т/год
0143	Марганец и его соединения	0,002774	0,00001387
0123	Железа оксид	0,188486	0,00094243
0337	Углерода оксид	0,092564	0,092564
0301	Азота диоксид	0,093586	0,093586

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Результаты расчётов максимально разовых выбросов с учетом 20-ти минутного осреднения представлены в таблице 27.

Таблина 27

	•		
Код	Название вещества	Выброс, г/с	После
			очистки, г/с
0143	Марганец и его соединения	1,76E-04	2,63889E-06
0123	Железа оксид	1,20E-02	0,000179306
0337	Углерода оксид	5,87E-03	0,017611111
0301	Азота диоксид	5,94E-03	0,017805556

16.Выброс загрязняющих веществ при заряде аккумуляторных батарей (Источник №61)

Оснащение аккумуляторной: автоматическое зарядное устройство для одновременного заряда двух кислотных или щелочных аккумуляторных батарей. Количество проведенных зарядок в год - 150, цикл проведения зарядки в день - 16 часов.

Валовый выброс серной кислоты и натрия гидроокиси подсчитывается па формуле:

$$Mi = 0.9 x g x (Qi x ai + Q2 x a2 + ... + Qn x an) x 10-9, т/год$$

где: g - удельное выделение серной кислоты или натрия гидроокиси, мг/А х ч;

Qn - номинальная емкость каждого типа аккумуляторных батарей, имеющихся в предприятии, A х ч;

ап- количество проведенных зарядок батарей соответствующей емкости за год.

Удельное выделение серной кислоты и натрия гидроокиси (g) можно принять в соответствии с п.3.7 Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М., 1998 :

$$g(H2SO4) = 1,0 \text{ мг/A x ч};$$

g(NaOH) = 0.80 мг/A x ч;

Расчет максимально разового выброса серной кислоты или натрия гидроокиси производится исходя из условий, что мощность зарядных устройств используется с максимальной нагрузкой. При этом сначала определяется валовый выброс за день:

$$M$$
сут = 0,9 x g x (Q x n') x 10-9, т/день

где: Q - номинальная емкость наиболее емких аккумуляторных батарей, имеющихся на предприятии, A х ч; n' - максимальное количество вышеуказанных батарей, которые можно одновременно подсоединять к зарядному устройству.

Максимально разовый выброс серной кислоты или натрия гидроокиси определяется по формуле:

 $Gi = Mcymi \times 106 / (m \times 3600), r/c$

Взам. инв. №	
Подпись и дата	
Инв. №подл	
	_

Согласовано

						ſ
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	

9035.1 – ПМООС 3

где m - цикл проведения зарядки в день, час. Принимается по фактическим данным предприятия, либо в соответствии с п.3.7 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом)». М., 1998 - m = 10 час.

Максимальные разовые выбросы:

Натрий гидроксид - 0,00001 г/с;

Серная кислота - 0,0125 г/с.

Валовые выбросы:

Натрий гидроксид - 0,000027 т/год;

Серная кислота - 0,000034 т/год.

17. Расчет выбросов загрязняющих веществ, поступающих в атмосферу при выполнении наплавки (Источник №62)

Расчет выбросов загрязняющих веществ выполнен по ГОСТ Р 56164-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей», Москва, 2015 г. (на основе удельных показателей), исходя из расхода электродов и удельных выбросов загрязняющих веществ.

$$M_{hi} = BK_{\rm T}^{\chi} \cdot 10^{-3} (1 - \eta) \tag{24}$$

где В – расход применяемых сырья и материалов, кг/ч;

 $K_{\rm T}^{\chi}$ – удельный показатель выделяемого в атмосферу загрязняющего вещества х на единицу массы расходуемых (приготавливаемых) сырья и материалов, г/кг;

 η — степень очистки воздуха в аппарате, входящем в группу технологических агрегатов. Удельные выбросы загрязняющих веществ, поступающих в атмосферу при наплавке приведены в таблице 23.

Таблица 23

Согласовано

읟

	Наименование и удельные количества выделяемых загрязняющих веществ										
Марка		В том числе (г/к	г)			Owarra					
	Сварочный аэрозоль, г/кг		неорганическая,	Оксид железа	Бор	Оксид углерода, г/кг					
ПГ-УС25	1,296	0,010	0,11	0,132	1,044	0,395					

Для выполнения наплавочных работ расход порошка марки ПГ-УС25 составит 1 кг/час и $730~\rm kr/rog$. Степень очистки 99,5%

Расчет валоввых выбросов загрязняющих веществ, поступающих в атмосферу при выполнении сварочных работ приведен в таблице 24.

Таблица 24

Наименование загрязняющих	Количество загрязняющих веществ,	После
веществ	поступающих в атмосферу при сварке, т	очистки, т/год
Сварочный аэрозоль, в том числе:	$1,296 \cdot 730 \cdot 10-6 = 0,00094608$	4,7304E-06
Железа оксид	$0,123 \cdot 730 \cdot 10-6 = 0,00008979$	4,4895E-07
Марганец и его соединения	$0.01 \cdot 730 \cdot 10-6 = 0.0000073$	3,65E-08
Бор	$1,044 \cdot 730 \cdot 10-6 = 0,00076212$	3,8106E-06
Углерода оксид	$0,395 \cdot 730 \cdot 10-6 = 0,00028835$	0,00028835

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Лист

4,015E-07

Пыль неорганическая, содержащая 0,11 · 730 · 10-6 = 0,0000803 SiO2 (20-70%)

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Расчет максимально разовых выбросов загрязняющих веществ, поступающих в атмосферу с учетом 20-ти минутного осреднения приведен в таблице 25. Таблица 25

Наименование загрязняющих веществ	Количество загрязняющих веществ,	После
паименование загрязняющих вещеетв	поступающих в атмосферу при сварке, г/с	очистки, г/с
Сварочный аэрозоль, в том числе:	$1,296 \cdot 1 \cdot /3600 = 0,00036$	6,00E-07
Железа оксид	$0.123 \cdot 1 \cdot /3600 = 3.41667 \text{E}-05$	5,68E-08
Марганец и его соединения	$0.01 \cdot 1 \cdot /3600 = 2,77778E-06$	4,64E-09
Бор	$1,044 \cdot 1 \cdot /3600 = 0,00029$	4,84E-07
Углерода оксид	$0.395 \cdot 1 \cdot /3600 = 0.000109722$	3,66E-05
Пыль неорганическая, содержащая SiO2 (20-70%)	$0.11 \cdot 1 \cdot /3600 = 3.05556$ E-05	5,08E-08

18. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу при механической обработке металлов (Источник №63)

Расчет выбросов проводится согласно «Методике расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выделений)»Санкт-Петербург, 2002.

Валовый выброс каждого загрязняющего вещества от металлообрабатывающего оборудования определяется по формуле:

Мвыб=3,6 К Т (1 - j) 10-3, т/год (37) Исходные данные и результаты расчета приведены в таблице 26.

Таблица 26

Согласовано

읟

Взам.

Подпись и дата

Тип обрабатыва емого сырья	Тип станка	охлажд	Мощн ость станка,	мя рабо ты в день	paoo	очист	Наименов ание вещества	Максима льно разовые выбросы, г/с	Валовые выброс ы, т/гол	Количест во отхода, т/год
НОМЕР ИС	ТОЧНИКА №	54								
Чугун	1 окарные	Эмульс ол	10	1	365	99,5	Пыль металлич еская	0,000003 15	4,14E-06	0,000823 68

Изм. Кол.уч. Лист № док. Подпись Дата

9035.1 – ПМООС 3

178

	l		<u> </u>	1	<u> </u>	<u> </u>	Only incom	<u> </u>	<u> </u>	<u> </u>	
Цветные	Фрезерные	Эмульс ол 3- 10%	132	1	365	99 5	Пыль металлич еская Эмульсол	9,5E-07	1,25E-06		24
Цветные	Фрезерные	Эмульс ол 3- 10%	10	1	365	99 5	Пыль металлич еская Эмульсол		1,25E-06 2,96E-08		24
Чугун	Фрезерные	Эмульс ол 3- 10%	16	1	365	99,5	Пыль металлич еская Эмульсол	3,6E-08	4,73E-08	-	
Чугун	Фрезерные	Эмульс ол 3- 10%	10	1	365	99,5	Пыль металлич еская Эмульсол				81
Чугун	Фрезерные	Эмульс ол 3- 10%	6	1	365	99,5	Пыль металлич еская Эмульсол		9,13E-06	33	81
Чугун	Фрезерные	Эмульс ол 3- 10%	3	1	365	99,5	Пыль металлич еская Эмульсол		9,13E-00	0,001 33 -	8
Цветные	Токарные	Эмульс ол менее 3%	6	1	365		Пыль металлич еская Эмульсол	0,000001 25 1,5E-08	1,64E-06 1,97E-08		32
Цветные	Токарные	Эмульс ол менее 3%	38	1	365	99 5	Птттт	0,000001 25	1,64E-06 1,25E-07		32
Чугун	Токарные	Эмульс ол менее 3%	24	1	365		Птип	0,000003 15	4,14E-06 7,88E-08	0,000 68	82
Чугун	Токарные	3% Эмульс ол менее 3%	10	1	365		Птип	0,000003 15	4,14E-06 3,29E-08		82
обрабатыва емого сырья	Тип станка	е охлажд ения менее			paoo	OHHOT	вещества	разовые выбросы, г/с	Валовые выброс	во отход т/год	Įа
Гип		Наличи		Вре мя	Дне	Степе		Максима		Коли	чε

Согласовано

Взам. инв. №

Подпись и дата

Инв. № подл

Изм. Кол.уч. Лист № док. Подпись Дата

Лист

179

								T		
Тип обрабатыва емого сырья	Тип станка	охлажд	1	рабо ты в лень	mano		Наименов ание вещества	Masoblie	Валовые	Количе во отхода, т/год
Цветные	Фрезерные	Эмульс ол 3- 10%	-10		365	99 5	Пыль металлич еская		1,25E-06	
	!	1070					Эмульсол	2,25E-08	2,96E-08	_
Чугун	Расточные	Эмульс ол 3- 10%	-10	1	365	99,5	металлич еская	0,000001 05	1,38E-06	36
		1070		ļ	ļ		Эмульсол	2,25E-08	2,96E-08	_
	Плоскошлифо вальные	охпажп		1	365	99 5	Пыль абразивна я	0,000125	0,00016 4	0,03268 75
Металл	пиаметр круга	ения		1			Пыль металлич еская	0,00019	0.00072	0,04968 34
	Плоскошлифо вальные	охпажл	-	1	365	99,5	Пыль абразивна я	7E-05	9 / 1 - 117	0,01830 02
Металл	диаметр круга 175, мм				303		Пыль металлич еская	0,00011	-	0,02876 46
	Круглошлифо вальные			1	265		Пыль абразивна я	0,000065	8,54E-05	0,01699 59
Металл	пиаметр круга	охлажд ения			365		Пыль металлич еская	0,0001	4	0,02614 6
Mama III	ифовальные	Без		1	265		Пыль абразивна я	0,000045	5,91E-05	0,01176 87
Металл	лиаметр круга	охлажд ения			365		Пыль металлич еская	8E-05		0,02091 88
Чугун	Сверлильные	Эмульс ол менее	9	1	365	99.5	Пыль металлич еская	0,000001 1	1,45E-06	0,00028 63
		3%					Эмульсол	2,25E-08	2,96E-08	-
Металл	ппифовальны	Без		1	365		Пыль абразивна я	0,000146	-	0,0381′ 96
METAJIJI	е диаметр круга 400, мм	охлажд ения		1	303		Пыль металлич еская	0,000375	*	0,0980: 25

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

Лист

180

Тип обрабатыва емого сырья	Тип станка	Наличи е охлажд ения	Мощн	Вре мя рабо ты в день , час	paoo	OHIZOT	Наименов ание вещества	разовые	Валовые выброс	Количе во отхода, т/год
Металл	ппифовальны	Без охлажд		1	365	99 5	Пыль абразивна я	0,000146	0,00019 2	0,03817 96
IVIC LASISI	е диаметр круга 400, мм	ения		1	365		Пыль металлич еская	0,000375	0,00049 3	0,09805 25
Металл	шпифовальны	Без		1	265		Пыль абразивна я	0,000146	-	0,03817 96
	е диаметр круга 400, мм	охлажд ения	_	1	365	99,5	Пыль металлич еская	0,000375	0,00049 3	0,09805 25
Металл		Без		1	365	99,5	Пыль абразивна я	0,000055	7,23E-05	0,01438 73
металл	диаметр круга 250, мм	охлажд ения		1	365		Пыль металлич еская	8E-05	0,00010 5	0,02091 88
Чугун	Сверлильные	Эмульс ол менее	2	1	365		Пыль металлич еская	0,000001 1	H 45E-06	0,00028 63
		3%					Эмульсол	5E-09	6,57E-09	-
Чугун	Гокарные	Эмульс ол менее	0,5	1	365	99.5	металлич еская		4,14E-06	
		3%					Эмульсол	1,25E-09	1,64E-09	-
Цветные	Сверлильные	Эмульс ол менее	2,2	1	365		Пыль металлич еская	2	2,63E-07	5,22971 05
		3%					Эмульсол	5,5E-09	7,23E-09	_
Металл	шпифовальны	Без		1	365		Пыль абразивна я	0,000146	0,00019 2	0,0381′ 96
IVICI AJIJI	е диаметр круга 400, мм	охлажд ения		1	503		Пыль металлич еская	0,000375	0,00049 3	0,09805 25
Металл	Отрезные		10	1	365		Пыль металлич еская	5	-	0,0265 ² 83
		10%					Эмульсол	1,035E- 06	1,36E-06	-
Металл	Отрезные	Эмульс ол 3- 10%	10	1	365	99,5	Пыль металлич еская	0,000101 5	-	0,0265 ² 83

9035.1 – ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. №подл

Изм. Кол.уч. Лист № док. Подпись Дата

Тип обрабатыва емого сырья	Тип станка	охлажд	Мощн	лень	paoo	очист	Наименов ание вещества	Максима льно разовые выбросы, г/с	валовые выброс ы т/гол	Количест во отхода, т/год
							Эмульсол	1,035E- 06	1,36E-06	-
ИТОГО:										
							Пыль абразивна я	0,000944	H	0,246842 78
							Пыль металлич еская	0,002312 2	-	0,604607 93
							Эмульсол	2,7675E- 06	3,64E-06	-

19. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу газоочистки (Источник №64)

На газоочистку сталеплавильного цеха поступают выбросы от ДСП-130, установки «печьковш», вакууматора и от мест пересыпки, системы хранения и подачи сыпучих материалов. Состав выбросов принят согласно данным поставщика основного технологического оборудования фирмы Даниели.

Высота дымовой трубы -80,0 м.

Диаметр дымовой трубы – 7,7 м.

Объем пылегазовой смеси -570,56 м3/с.

Скорость дымовых газов -12,26 м/с.

Температура отходящих газов – 120 0С.

Количество часов работы оборудования составляет 7680 часов.

По данным фирмы Даниели приведены удельные выбрасы загрязняющих веществ на тонну готовой продукции.

Производительность сталеплавильнго цеха в секунду:

 $1\ 250\ 000/\ 7680/\ 3600 = 0.0452\ \text{T/c}$

Согласовано

읟

Таблица 27 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязня	нощее вещество	Максимальн	Концентрация,	Годовой
код	наименование	о разовый выброс, г/с		выброс, т/год
301	Азота диоксид (Азот (IV) оксид)	18,916	29,6728	523
304	Азот (II) оксид (Азота оксид)	3,07385	4,82183	84,9875
0330	Сера диоксид	16,457	25,815	455,00
337	Углерод оксид	86,444	135,598	2390,00
2902	Взвешенные вещества	6,375	10,00	176,25

20. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от установки сушки лома (источник №65)

В печном пролете сталеплавильного цеха находятся 3-и установки сушек лома. Одновременно работают 2 установки. Продукты сгорания от установок отводятся без очистки в атмосферу через вытяжную трубу, общую на 3-и установки:

Диаметр трубы -1,2 м;

						Г
Изм.	Коп.уч.	Лист	№ док.	Подпись	Дата	
710.011	NOJI.	717101	т- док.	ПОДПИОВ	дини	L

9035.1 – ПМООС 3

Высота трубы -42,5 м.

Количество дымовых газов от одной установки -13,88 м3/c.

Скорость дымовых газов -13,31 м/с.

Температура дымовых газов – 100 0С.

Расход природного газа -700 нм3/ч.

Количество часов работы – 3000 ч/год.

Удельные выбросы загрязняющих веществ приняты согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса» и приведены в таблице 28.

Таблина 28

20.2. Установка нагревательная		г/нм3		
для сушки и нагрева литейных	Вещество	сжигаемого	г/с	т/год
ковшей		газа		
	Азота диоксид	1,72	0,6688	7,224
	Азот (II) оксид	0,28	0,1088	1,176
	Углерод оксид	12,90	5,0166	54,18

21. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от установки вертикального подогрева стальковшей (источник N66)

В печном пролете сталеплавильного цеха находятся 1-а установка вертикального подогрева стальковшей. Продукты сгорания от установки отводятся без очистки в атмосферу через вытяжную трубу:

Диаметр трубы -0.7 м.

Высота трубы -42,5 м.

Количество дымовых газов от одной установки -3,15 м3/c.

Скорость дымовых газов -8.3 м/с.

Температура дымовых газов – 260 0С

Расход природного газа – 400 нм3/ч.

Количество часов работы – 1080 ч/год.

Удельные выбросы загрязняющих веществ приняты согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса» и приведены в таблице 29.

Таблица 29

Согласовано

읟

Взам.

Подпись и дата

20.2. Установка нагревательная		г/нм3		
для сушки и нагрева литейных	Вещество	сжигаемого	г/с	т/год
ковшей		газа		
	Азота диоксид	1,72	0,1911	0,74304
	Азот (II) оксид	0,28	0,0311	0,12096
	Углерод оксид	12,90	1,4333	5,5728

22. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от установки вертикального подогрева стальковшей (источник №67)

В печном пролете сталеплавильного цеха находятся 2 установки горизонтального подогрева стальковшей. Одновременно работают две установки, коэффициент одновременности K=0,5. Продукты сгорания от установок отводятся без очистки в атмосферу через вытяжную трубу:

Диаметр трубы -0.7 м;

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

$9035.1 - \Pi MOOC 3$

Высота трубы -42,5 м.

Количество дымовых газов от одной установки -2,35 м3/с.

Скорость дымовых газов -6.1 м/c.

Температура дымовых газов – 260 0С

Расход природного газа — 350 нм3/ч.

Количество часов работы – 1260 ч/год.

Удельные выбросы загрязняющих веществ приняты согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса» и приведены в таблице 30.

Таблица 30

20.2. Установка нагревательная для сушки и нагрева литейных		г/нм3 сжигаемого	г/с	т/год
ковшей		газа		
	Азота диоксид	1,72	0,1672	0,75852
	Азот (II) оксид	0,28	0,0272	0,12348
	Углерод оксид	12,90	1,2542	5,6889

23. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от установки сушки стальковшей (источник №68)

В печном пролете сталеплавильного цеха находятся 2-е установки горизонтального подогрева стальковшей. Одновременно работают 2-е установки. Продукты сгорания от установки отводятся без очистки в атмосферу через вытяжную трубу, общую на две установки:

Диаметр трубы -1,0 м;

Высота трубы -42,5 м.

Количество дымовых газов от одной установки -3,15 м3/c.

Скорость дымовых газов -8.03 м/с.

Температура дымовых газов – 120 0С

Расход природного газа -300 нм3/ч.

Количество часов работы – 2600 ч/год.

Удельные выбросы загрязняющих веществ приняты согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса» и приведены в таблице 31.

Таблица 31

Согласовано

읟

Подпись и дата

20.2. Установка нагревательная		г/нм3		
для сушки и нагрева литейных	Вещество	сжигаемого	г/с	т/год
ковшей		газа		
	Азота диоксид	1,72	0,2866	2,6832
	Азот (II) оксид	0,28	0,0466	0,4368
	Углерод оксид	12,90	2,15	20,124

24. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от установки сушки промежуточных ковшей (источник №69)

В печном пролете сталеплавильного цеха находятся 3 установки сушек промежуточных ковшей. Одновременно работают две установки. Продукты сгорания от установок отводятся без очистки в атмосферу через вытяжную трубу, общую на три установки: Диаметр трубы -1,0 м;

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Лист

Высота трубы -42,5 м.

Количество дымовых газов от одной установки -3,15 m3/c.

Скорость дымовых газов -8.03 м/с.

Температура дымовых газов – 120 0С

Расход природного газа – 250 нм3/ч.

Количество часов работы – 2000 ч/год.

Удельные выбросы загрязняющих веществ приняты согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования для предприятий радиоэлектронного комплекса» и приведены в таблице 32.

Таблица 32

20.2. Установка нагревательная для сушки и нагрева литейных		г/нм3 сжигаемого	г/c	т/год
ковшей		газа	170	птод
	Азота диоксид	1,72	0,2389	1,72
	Азот (II) оксид	0,28	0,0389	0,28
	Углерод оксид	12,90	1,7917	12,9

25. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от аэрационных фонарей печного пролета (источник №70)

В печном пролете установлены 2-а аэрационных фонаря следующих характеристик:

Высота фонаря -45,0 м.

Скорость отходящих газов -1,55 м/с.

Объем отходящих газов – 360 м3/с.

Температура отходящих газов − 38 0C.

Количество часов работы – 2160 ч/год.

Состав выбросов принят на основании опыта работы аналогичных установок на других заводах.

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Таблица 33

Согласовано

읟

Взам.

	Количество выбр	осов загрязняющих
Наименование вещества	веществ	
	г/сек	т/год
Железа оксид	0,40747	16,1315
Марганец и его соединения	0,000703	0,25075
Азота диоксид (Азот IV) оксид)	0,53398	11,5131
Азота оксид	0,0869	0,80634
Сера диоксид	0,01353	0,09722
Углерода оксид	2,4496	27,181

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Взвешенные вещества	0,041409	1,3059

26. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от аспирационных фонарей пролета складирования и отгрузки заготовки (источник №71)

В печном пролете установлены 4-а аэрационных фонаря следующих характеристик:

Высота фонаря – 41,5 м.

Скорость отходящих газов -1,55 м/с.

Объем отходящих газов -540 м3/c.

Температура отходящих газов – 38 0С.

Количество часов работы – 2160 ч/год.

Состав выбросов принят на основании опыта работы аналогичных установок на других заводах.

Таблица 34

	Количество выбр	осов загрязняющих
Наименование вещества	веществ	
	г/сек	т/год
Оксид железа	1,7092	53,9
Марганец и его соединения	0,001055	0,37616
Азота диоксид (Азот IV) оксид)	0,80097	17,2697
Азота оксид	0,13035	1,20951
Сера диоксид	0,02029	0,14583
Углерода оксид	3,6744	40,7715
Взвешенные вещества	0,06211	1,95885

27. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от дымовой трубы нагревательной печи (источник N22)

От нагревательной печи прокатного стана дымовые газы отводятся через дымовую трубу следующих характеристик:

Диаметр дымовй трубы -3.0 м.

Скорость отходящих газов -7,69 м/с.

Объем отходящих газов -54,32 м3/с.

Температура отходящих газов – 256 ОС.

Расход природного газа – 9610 нм3/ч.

Количество часов работы – 7200 ч/год.

Концентрации NOx приняты согласно тома ПДВ существующего завода и составляют 350 мг/нм3.

 $Mmp = 350*54,32/1000 = 19,012 \Gamma/c$

 $M_{\Gamma} = 19,012*3600*7200/1000000 = 492,791$ т/год

MNO2 = $19,012*0,8 = 15,2096 \, \text{r/c}$

MNO2 = 492,791*0,8 = 394,2328 т/год

MNO = 19,012*0,13 = 2,47156 r/c

MNO = 492,791*0,13 = 64,063 т/год

Концентрации СО приняты согласно тома ПДВ существующего завода и составляют 320 мг/нм3.

Mmp = 320*54.32/1000 = 17.3824 r/c

№ док. Подпись Дата

 $M_{\Gamma} = 17,3824*3600*7200/1000000 = 450,551$ т/год

Изм.	Кол.уч.

Согласовано

읟

Концентрации SO2 приняты согласно тома ПДВ существующего завода и составляют 0,55 мг/нм3.

 $M_{\text{Mp}} = 0.55*54.32/1000 = 0.029876 \text{ r/c}$

 $M_{\Gamma} = 0.029876*3600*7200/1000000 = 0.77438592 \text{ T/год}$

Концентрации взвешенных веществ приняты согласно тома ПДВ существующего завода и составляют 55 мг/нм3.

Mmp = 55*54.32/1000 = 2.9876 r/c

 $M_{\Gamma} = 2,9876*3600*7200/1000000 = 77,439$

27. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от трубы аспирационной установки прокатной клети BDM#1 (источник №73)

Запыленный воздух, с пылью оксида железа, от прокатной клети перед выбросом в атмосферу очищается в аспирационной установке до 30 мг/м3.

Высота вытяжной трубы -27,0 м.

Диаметр вытяжной трубы -1,2 м.

Скорость отходящих газов — 29,49 м/c.

Объем отходящих газов -33,33 м3/с.

Температура отходящих газов – 30 0С.

Количество часов работы – 7200 ч/год.

Таблица 36

Загряз	вняющее вещество	Максимально	Концентрация,	Годовой	выброс.
код	наименование	разовый выброс г/с	с, мг/м3	т/год	выорос,
123	Оксид железа	1,0	30,0	25,92	

28. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от трубы аспирационной установки прокатной клети BDM#2 (источник №74)

Запыленный воздух, с пылью оксида железа, от прокатной клети перед выбросом в атмосферу очищается в аспирационной установке до 30 мг/м3.

Высота вытяжной трубы -27,0 м.

Диаметр вытяжной трубы -1,2 м.

Скорость отходящих газов — 29,49 м/c.

Объем отходящих газов -33,33 м3/с.

Температура отходящих газов – 30 0С.

Количество часов работы – 7200 ч/год.

Таблица 37

Согласовано

읟

Взам.

Подпись и дата

Загрязн	яющее вещество	Максимально	Концентрация,	Годовой выброс,
код	наименование	разовый выброс, г/с	мг/м3	т/год
123	Оксид железа	1,0	30,0	25,92

28. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от трубы аспирационной установки прокатной клети UFR (источник №75)

Запыленный воздух, с пылью оксида железа, от прокатной клети перед выбросом в атмосферу очищается в аспирационной установке до 30 мг/м3.

Высота вытяжной трубы – 27,0 м.

Диаметр вытяжной трубы -1,2 м.

Скорость отходящих газов -29,49 м/с.

Объем отходящих газов -33,33 м3/c.

Температура отходящих газов – 30 0С.

Количество часов работы -7200 ч/год.

Таблица 38

							Γ
	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	
_							_

 $9035.1 - \Pi MOOC 3$

Загрязн	яющее вещество	Максимально	Концентрация,	Годовой выброс,
код	наименование	разовый выброс, г/с	мг/м3	т/год
123	Оксид железа	1,0	30,0	25,92

29. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от трубы аспирационной установки прокатной клети UF (источник №76)

Запыленный воздух, с пылью оксида железа, от прокатной клети перед выбросом в атмосферу очищается в аспирационной установке до 30 мг/м3.

Высота вытяжной трубы -27,0 м.

Диаметр вытяжной трубы -1,0 м.

Скорость отходящих газов -21,23 м/с.

Объем отходящих газов -16,67 м3/с.

Температура отходящих газов – 30 ОС.

Количество часов работы – 7200 ч/год.

Таблица 39

•	· '	Максимально разовый выброс, г/с	MΓ/M3	Годовой выброс, т/год
123	Оксид железа	0,5	30,0	12,96

30. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от аэрационных фонарей станового пролета (источник №77)

В становом пролете установлены 6-ть аэрационных фонарей следующих характеристик:

Высота фонаря – 30,5 м.

Скорость отходящих газов -1,2 м/с.

Объем отходящих газов – 453 м3/с.

Температура отходящих газов – 38 0С.

Количество часов работы – 2160 ч/год.

Состав выбросов принят на основании опыта работы аналогичных установок на других заводах.

Таблица 40

Согласовано

읟

Наименование вещества	Количество выбр веществ	осов загрязняющих
	г/сек	т/год
Азота диоксид (Азот IV) оксид)	1,8359	57,9
Азота оксид	0,2983	9,4088
Окислы железа	0,611205	24,19725
Углерода оксид	2,4496	77,25
Взвешенные вещества	3,1900	100,6

30. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от аэрационных фонарей участка холодильника (источник №78)

В становом пролете установлены 2-а аэрационных фонаря следующих характеристик:

Высота фонаря – 31,5 м.

Скорость отходящих газов -1,2 м/с.

Объем отходящих газов – 453 м3/с.

Температура отходящих газов – 38 0С.

Количество часов работы – 2160 ч/год.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Состав выбросов принят на основании опыта работы аналогичных установок на других заводах.

Таблина 41

Согласовано

읟

Взам.

Подпись и дата

	Количество выбр	осов загрязняющих
Наименование вещества	веществ	
	г/сек	т/год
Окислы железа	1,2819	40,425
Азота диоксид (Азот IV) оксид)	0,5866	34,2
Азота оксид	0,0953	8,6
Углерода оксид	0,8731	28,4
Взвешенные вещества	1,8614	49,2

30. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от хранения и перегрузки металлолома участока подготовки производства (источник №6057)

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2012.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 4-х сторон (K4 = 1). Высота падения материала при пересыпке составляет 0,5 м (B = 0,4). Залповый сброс при разгрузке автосамосвала отсутствует (K9 = 1). Расчетные скорости ветра, м/с: 1 (K3 = 1); 3 (K3 = 1,2); 6 (K3 = 1,4); 8,5 (K3 = 1,7); 11 (K3 = 2); 13 (K3 = 2,3); 15 (K3 = 2,6). Средняя годовая скорость ветра 1,9 м/с (K3 = 1).

Таблица 42 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязн	яющее вещество	Максимально	Годовой выброс
код	наименование	разовый выброс, г/с	т/год
123	диЖелезо триоксид (Железа оксид)	0,3286	3,9841

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице.

Таблица 43 - Исходные данные для расчета

Материал	II Ianametnii	Одновре менность
крупногабаритный	Количество перерабатываемого материала: $G_{\rm V} = 177$ т/час; $G_{\rm F} = 1450000$ т/год. Весовая доля пылевой фракции в материале: $K_{\rm I} = 0,00102$. Доля пыли, переходящая в аэрозоль: $K_{\rm I} = 0,07$. Влажность до 1% ($K_{\rm I} = 0,9$). Размер куска 500 мм и более ($K_{\rm I} = 0,1$).	-

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле:

 $M\Gamma P = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G_{4} \cdot 106 / 3600, \Gamma/c$

где К1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

К2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К3 - коэффициент, учитывающий местные метеоусловия;

К4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

К7 - коэффициент, учитывающий крупность материала;

K8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K8 = 1;

К9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

Gч - суммарное количество перерабатываемого материала в час, т/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле:

где Gгод - суммарное количество перерабатываемого материала в течение года, т/год.

При расчете выделения конкретного загрязняющего вещества в виде дополнительного множителя учитывается массовая доля данного вещества в составе продукта.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Металлолом крупногабаритный

```
M1231 м/с = 0.00102 \cdot 0.07 \cdot 1 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.1264 г/с; M1233 м/с = 0.00102 \cdot 0.07 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.1517 г/с; M1236 м/с = 0.00102 \cdot 0.07 \cdot 1.4 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.1769 г/с; M1238.5 м/с = 0.00102 \cdot 0.07 \cdot 1.7 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.2148 г/с; M12311 м/с = 0.00102 \cdot 0.07 \cdot 2 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.2528 г/с; M12313 м/с = 0.00102 \cdot 0.07 \cdot 2.3 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.2907 г/с; M12315 м/с = 0.00102 \cdot 0.07 \cdot 2.3 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.3286 г/с; M12315 м/с = 0.00102 \cdot 0.07 \cdot 2.6 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 177 \cdot 106 / 3600 = 0.3286 г/с; П123 = 0.00102 \cdot 0.07 \cdot 1 \cdot 1 \cdot 0.9 \cdot 0.1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 1450000 = 3.727 т/год.
```

31. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу погрузочных машин участка хранения и погрузки металлолома (источник №6058)

Источником выбросов является 10 мобильных погрузочных машин, работающих на дизельном топливе.

Количесвто часов работы – 5840 час/год

Количество загрязняющих веществ, поступающих в атмосферу при работе погрузчиков, рассчитано по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г., «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» (Министерство транспорта Российской Федерации), М., 1999г. и «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Валовый выброс загрязняющих веществ, поступающих в атмосферу при работе дорожной техники, рассчитывается по формуле:

$$M_{i} = \left[\sum_{k=1}^{k} (M_{ik}^{'} + M_{ik}^{'}) + \sum_{k=1}^{k} (M_{\partial eik} \cdot t_{\partial e}^{'} + 1.3M_{\partial eik} \cdot t_{\text{map}}^{'} + M_{xxik} \cdot t_{xx}^{'}) \cdot 10^{-6}\right] \cdot D_{\phi},$$

где: $M_{ik}^{'}, M_{ik}^{''}$ – выбросы при выезде и въезде с территории площадки (стоянки в пределах стройплощадки), формулы 2,1 и 2,2 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом)» и

	_			
0				
огласовано				
ပိ				
	No.	1B. Nº	ľ	
	D. 111	БЗАМ. ИПВ. 1		
	0.101	Дага		
	1011000	подпись и дага		
	Nonon	пфонал		

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

«Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)»;

 $t_{\it ob}^{\it f}$ — суммарное время движения без нагрузки всей техники данного типа в течении рабочего дня, мин;

 $t_{xx}^{'}$ — суммарное время холостого хода для всей техники данного типа, в течении рабочего дня, мин;

При этом согласно «Методическому пособию по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух» для перевода величины удельного выброса загрязняющего вещества «mL, (г/км)» из таблиц 2.8 и 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» следует величину «mL» умножать на рабочую скорость автотранспортных средств.

Удельные выбросы для автотранспортных средств приняты в соответствии с таблицей 2.11 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)» — для автомобилей выпуска после 01.01.94г.

Удельные показатели выбросов и валовое количество загрязняющих веществ, поступающих в атмосферу в период строительства проектируемого объекта, приведены в таблице 44.

Таблица 44

Согласовано

Наименован ие вещества	движения без нагрузки,	Время движения с нагрузкой, мин	дытжения,	Удельные при пробеге	хх, мин	Удельны е на холостом ходу	Максимальн о разовые выбросы, г/с	выбросы,
НОМЕР ИСТ	ОЧНИКА	№ 6058						
Автопогрузчі	ик (дизель)	выпуска п	осле 1994 г	года (10 ав	т/час)			
СО				5,9		0,84	0,181213	3,809821 3
СН				0,8		0,42	0,011667	0,24528
NOx				3,4		0,46	0,103759	2,181434 7
NO2	12	13	10	_	5	-	0,083007	1,745147 7
NO				_		-	0,013489	0,283586 5
С				0,3		0,019	0,008556	0,179872
SO2				0,59		0,1	0,016316	0,343022 1

32. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от площадки газовой резки металла (источник №6059)

Источниками вредных выбросов являются площадки для газовой резки в количестве 8 шт. Толщина стали 10 мм. Оддновременно работают 4 шт. Количество часов работы - 7300 ч/год

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Расчет выбросов загрязняющих веществ выполнен по ГОСТ Р 56164-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей», Москва, 2015 г. (на основе удельных показателей).

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Удельные выбросы и результаты расчета приведены в таблице 45. Таблица 45

	Удельные	Количество	выбросов
	количества	загрязняюц	цих
Наименование вещества	выделяемых	веществ	
	загрязняющих веществ, г/ч	г/сек	т/год
диЖелезо триоксид (Железа оксид)	129,1	0,048	3,76972
Марганец и его соединения (в пересчете на марганец (IV) оксид)	1,9	0,00007	0,05548
Азота диоксид (Азот IV)оксид)	64,1	0,0237	1,87172
Азота оксид	_	0,00476	0,3692
Углерод оксид	63,4	0,0235	1,85128

33. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу при отгрузке плак автосамосвалы и работы погрузчиков на участке первичной переработки шлака (источник № 6060 Источником пылевыделений является перегрузка сыпучего материала (шлака). Расчет выполняется согласно «Методическому пособию по расчету неорганизованных источником

промышленности строительных материалов» ЗАО «НИПИОТСТРОМ», Новороссийск 2001 и Определяем объем пылевыделений при формировании конусообразных штабелей шлака:

Исходные данные для расчета удельного и валового выброса пыли (Пыль с содержанием \$iO2 70%) при хранении шлака в штабеле

Таблица 46

Согласовано

읟

Взам. инв.

№ п/п	Наименование исходных данных	Значение исходных данных, используемых в расчетах	используемы	и значения х в расчетах
1	Количество перерабатываемого материала		Gчас, т/час Gгод, т/год	28,6 220 000
2	Содержание пыли	0 - 200 мкм	K1	0,05

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

3	Содержание пыли, переходящей в аэрозоль	0-10 мкм	K2	0,02
4		5-7 м/с	К3	1,4
5	Степень защищенности узла пересыпки	открыт	K4	1,0
6	Влажность материала	до 9 %	K5	0,2
7	Учет крупности материала	500-100 мм	K7	0,2
8	Учет неравномерности выгрузки материала		K8	0,41
9	Коэффициент, учитывающий мощный залповый выброс при загрузке автосамосвала		K9	0,2
10	Высота перегружаемого материала	1,5 м	В	0,6

Определяем удельные объёмы пылевыделений при загрузке автотранспорта:

Мгр=К1·К2·К3·К4 К5·К7·К8·К9·В·Gч·106/3600, г/с

 $Mrp = 0.05 \cdot 0.02 \cdot 1.4 \cdot 1.0 \cdot 0.2 \cdot 0.2 \cdot 0.41 \cdot 0.2 \cdot 0.6 \cdot 28.6 \cdot 106 \ / 3600 = 0.02189 \ r/c;$

Определяем объёмы валовых выбросов при загрузке автотранспорта:

 Π гр= K1·K2·K3·K4·K5·K7·K8·K9·В·Gгод, т/год

 Π гр = 0,05·0,02·1,4·1,0·0,2·0,2·0,41·0,2·0,6·220000 = 0,606 т/год

Количество загрязняющих веществ, поступающих в атмосферу при работе погрузчиков, рассчит по «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для дорожной техники (расчетным методом)» (Министерство транспорта Российской Федерации), 1999г., «Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом)» (Министерство транспорта Российс Федерации), М., 1999г. и «Методическому пособию по расчету, нормированию и контролю выбро загрязняющих веществ в атмосферный воздух», С. П. 2012 г.

Валовый выброс загрязняющих веществ, поступающих в атмосферу при работе дорожной техни рассчитывается по формуле:

$$M_{i} = \left[\sum_{k=1}^{k} (M_{ik}^{'} + M_{ik}^{''}) + \sum_{k=1}^{k} (M_{\partial eik} \cdot t_{\partial e}^{'} + 1,3M_{\partial eik} \cdot t_{\mu a z p}^{'} + M_{xxik} \cdot t_{xx}^{'}) \cdot 10^{-6}\right] \cdot D_{\phi}, T$$

где: $M_{ik}^{'}, M_{ik}^{''}$ — выбросы при выезде и въезде с территории площадки (стоянки в преде стройплощадки), формулы 2,1 и 2,2 «Методики проведения инвентаризации выбросов загрязняют веществ в атмосферу для баз дорожной техники (расчетным методом)» и «Методики проведе инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприя (расчетным методом)»;

 $t_{\partial s}^{\prime}$ — суммарное время движения без нагрузки всей техники данного типа в течении рабочего дмин;

 $t_{{\scriptscriptstyle HAZP}}^{\prime}$ — суммарное время движения с нагрузкой всей техники данного типа в течении рабочего дмин;

 t'_{xx} — суммарное время холостого хода для всей техники данного типа, в течении рабочего дня, ми При этом согласно «Методическому пособию по расчету, нормированию и контролю выбро загрязняющих веществ в атмосферный воздух» для перевода величины удельного выбр

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

9035.1 – ПМООС 3

Лист

загрязняющего вещества «mL, (г/км)» из таблиц 2.8 и 2.11 «Методики проведения инвентариза выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчеть методом)» следует величину «mL» умножать на рабочую скорость автотранспортных средств. Удельные выбросы для автотранспортных средств приняты в соответствии с таблицей 2 «Методики проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом)» – для автомобилей выпуска после 01.01.9 Удельные показатели выбросов и валовое количество загрязняющих веществ, поступающи атмосферу в период строительства проектируемого объекта, приведены в таблице 47. Таблица 47

Наименование вещества	движения без нагрузки,	Время движения с нагрузкой, мин	движения,	Удельные прі пробеге	Время хх, мин	VOTOCTOM VOTO	nazorkie	Валовые выбросы, т/год			
НОМЕР ИСТО	НОМЕР ИСТОЧНИКА № 6060										
Автопогрузчи	с (дизель)	выпуска по	осле 1994 г	ода (10 авт/час	:)						
СО				5,9		0,84	0,036243	0,7619643			
СН				0,8		0,42	0,002333	0,049056			
NOx				3,4		0,46	0,020752	0,4362869			
NO2	12	13	10	-	5	_	0,016601	0,3490295			
NO				-		_	0,002698	0,0567173			
С				0,3		0,019	0,001711	0,0359744			
SO2				0,59		0,1	0,003263	0,0686044			

34. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от участка очистки железнодорожных вагонов (источник №6061)

Согласно ГОСТ 2787-75* «Металлы вторичные» процентное содержание примесей в металлоломе составляет до 3%.

Принимается количество примесей 1 % от поступающего металлолома, тогда годовое количество примесей составит: 1450000т х 0.01 = 14500 т или 1.7 т/час.

В состав примесей входят: металл мелкогабаритный (20%) - 0,35 т/час или 3370 т/год; песок и щебень (60%) - 1 т/ч или 8760 т/год, дерево (20%) - 0,35 т/час или 3370 т/год.

Расчет выделения пыли при ведении погрузочно-разгрузочных работ выполнен в соответствии с «Методическим пособием по расчету выбросов от неорганизованных источников в промышленности строительных материалов», Новороссийск, 2001; «Методическим пособием по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», СПб., 2005.

Перегрузка сыпучих материалов осуществляется без применения загрузочного рукава. Местные условия — склады, хранилища, открытые с 2-х сторон (K4 = 0,2). Высота падения материала при пересыпке составляет 2,0 м (B = 0,7). Залповый сброс при разгрузке автосамосвала отсутствует (K9 = 1). Расчетные скорости ветра, м/с: 1 (K3 = 1); 3 (K3 = 1,2); 6 (K3 = 1,4); 8,5 (K3 = 1,7); 11 (K3 = 2); 13 (K3 = 2,3); 15 (K3 = 2,6). Средняя годовая скорость ветра 1,9 м/с (K3 = 1).

Таблица 48 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязн	яющее вещество	Максимально	Гоновой виблос
код	наименование	разовыи	Годовой выброс, т/год
123	диЖелезо триоксид (Железа оксид)	0,001516	0,0202

Изі	м.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

읟

Взам. инв.

Подпись и дата

9035.1 – ПМООС 3

Лист 193

Загрязн	яющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
2907	Пыль неорганическая, содержащая двуокись кремния более 70%	0,01747	0,2119
2908	Пыль неорганическая, содержащая 70-20% двуокиси кремния	0,0408	0,4945
2936	Пыль древесная	0,0099	0,1321

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 49.

Таблица 49 - Исходные данные для расчета

		Одновр
Материал	Параметры	еменно
		сть
Металлолом	Количество перерабатываемого материала: Gч = 0,35	-
мелкогабаритный	т/час; Gгод = 3370 т/год. Весовая доля пылевой	
	фракции в материале: К1 = 0,00102. Доля пыли,	
	переходящая в аэрозоль: $K2 = 0.07$. Влажность $0-0.5\%$	
	(K5 = 1). Размер куска 10-5 мм $(K7 = 0.6)$.	
Песчано-гравийная смесь	Количество перерабатываемого материала: Gч = 1	+
(ПГС)	т/час; Gгод = 8760 т/год. Весовая доля пылевой	
	фракции в материале: К1 = 0,03. Доля пыли,	
	переходящая в аэрозоль: $K2 = 0.04$. Влажность $0-0.5\%$	
	(K5 = 1). Размер куска 3-1 мм $(K7 = 0.8)$. Грейфер 2583	
	грузоподъемностью 5 т ($K8 = 0,6$).	
Опилки древесные	Количество перерабатываемого материала: Gч = 0,35	-
	т/час; Gгод = 3370 т/год. Весовая доля пылевой	
	фракции в материале: К1 = 0,04. Доля пыли,	
	переходящая в аэрозоль: $K2 = 0.01$. Влажность $0-0.5\%$	
	(K5 = 1). Размер куска 5-3 мм $(K7 = 0,7)$.	

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Максимально разовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле:

 $M\Gamma P = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot Gq \cdot 106 / 3600, Γ/c$

где К1 - весовая доля пылевой фракции (0 до 200 мкм) в материале;

К2 - доля пыли (от всей весовой пыли), переходящая в аэрозоль (0 до 10 мкм);

К3 - коэффициент, учитывающий местные метеоусловия;

Согласовано

읟

Взам. инв.

Подпись и дата

К4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования;

К5 - коэффициент, учитывающий влажность материала;

К7 - коэффициент, учитывающий крупность материала;

K8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера, при использовании иных типов перегрузочных устройств K8 = 1;

К9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В - коэффициент, учитывающий высоту пересыпки;

Gч - суммарное количество перерабатываемого материала в час, т/час.

Валовый выброс пыли при перегрузке сыпучих материалов, рассчитывается по формуле:

	форм	_	P = K	1 · K2 · 1	K3 · k	$K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot B \cdot G$ год, т/год	
						9035.1 – ПМООС 3	Лист
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата		194

Металлолом мелкогабаритный

```
M1231 м/с = 0,00102 · 0,07 · 1 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,000583 г/с; M1233 м/с = 0,00102 · 0,07 · 1,2 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,0007 г/с; M1236 м/с = 0,00102 · 0,07 · 1,4 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,000816 г/с; M1238.5 м/с = 0,00102 · 0,07 · 1,7 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,000991 г/с; M12311 м/с = 0,00102 · 0,07 · 2 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,001166 г/с; M12313 м/с = 0,00102 · 0,07 · 2,3 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,00134 г/с; M12315 м/с = 0,00102 · 0,07 · 2,6 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,001516 г/с; M12315 м/с = 0,00102 · 0,07 · 2,6 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 0,35 · 106 / 3600 = 0,001516 г/с; M123 = 0,00102 · 0,07 · 1 · 0,2 · 1 · 0,6 · 1 · 1 · 0,7 · 3370 = 0,0202 т/год.
```

Песчано-гравийная смесь (ПГС)

```
M29071 м/c = 0,03 · 0,04 · 1 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,00672 г/с; M29073 м/c = 0,03 · 0,04 · 1,2 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,00806 г/с; M29076 м/c = 0,03 · 0,04 · 1,4 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,0094 г/с; M29078.5 м/c = 0,03 · 0,04 · 1,7 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,01142 г/с; M290711 м/c = 0,03 · 0,04 · 2 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,01344 г/с; M290713 м/c = 0,03 · 0,04 · 2,3 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,01546 г/с; M290715 м/c = 0,03 · 0,04 · 2,6 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,3 = 0,01747 г/с; П2907 = 0,03 · 0,04 · 1 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 8760 · 0,3 = 0,2119 т/год.
```

```
M29081 м/с = 0,03 · 0,04 · 1 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,01568 г/с; M29083 м/с = 0,03 · 0,04 · 1,2 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,0188 г/с; M29086 м/с = 0,03 · 0,04 · 1,4 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,02195 г/с; M29088.5 м/с = 0,03 · 0,04 · 1,7 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,02666 г/с; M290811 м/с = 0,03 · 0,04 · 2 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,03136 г/с; M290813 м/с = 0,03 · 0,04 · 2,3 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,0361 г/с; M290815 м/с = 0,03 · 0,04 · 2,6 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 1 · 106 / 3600 · 0,7 = 0,0408 г/с; M2908 = 0,03 · 0,04 · 1 · 0,2 · 1 · 0,8 · 0,6 · 1 · 0,7 · 8760 · 0,7 = 0,4945 т/год.
```

Опилки древесные

Согласовано

읟

инв.

Взам.

Подпись и дата

```
\begin{array}{l} M29361 \text{ m/c} = 0.04 \cdot 0.01 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00381 \text{ r/c}; \\ M29363 \text{ m/c} = 0.04 \cdot 0.01 \cdot 1.2 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00457 \text{ r/c}; \\ M29366 \text{ m/c} = 0.04 \cdot 0.01 \cdot 1.4 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00534 \text{ r/c}; \\ M29368.5 \text{ m/c} = 0.04 \cdot 0.01 \cdot 1.7 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00648 \text{ r/c}; \\ M293611 \text{ m/c} = 0.04 \cdot 0.01 \cdot 2 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00762 \text{ r/c}; \\ M293613 \text{ m/c} = 0.04 \cdot 0.01 \cdot 2.3 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.00877 \text{ r/c}; \\ M293615 \text{ m/c} = 0.04 \cdot 0.01 \cdot 2.6 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.0099 \text{ r/c}; \\ M293615 \text{ m/c} = 0.04 \cdot 0.01 \cdot 2.6 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 0.35 \cdot 106 \, / \, 3600 = 0.0099 \text{ r/c}; \\ M2936 = 0.04 \cdot 0.01 \cdot 1 \cdot 0.2 \cdot 1 \cdot 0.7 \cdot 1 \cdot 1 \cdot 0.7 \cdot 3370 = 0.1321 \text{ T/rog}. \end{array}
```

35. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от помещения дозирования гипохлорита натрия блока водоподготовки (источник №79)

Помещение дозирования гипохлорита натрия оборудовано системой приточно-вытяжной вентиляции с 6-ти кратным воздухообменом. Выбросы от этого помещения не содержат

ı						
ı						
	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

$9035.1 - \Pi MOOC 3$

Расчет выброса от помещения:

 $[(\Pi \coprod K \text{ м.р.} \times \Pi \times V):1000]:3600 = [(1 \times 6 \times 270):1000]:3600 = 0,00045 \Gamma/c,$ где

ПДК м.р. - предельно допустимая в рабочей зоне производства, составляет 1 мг/м³;

V - объем помещения дозирования гипохлорита натрия, 270 м3;

п – кратность воздухообмена в помещении, принята 6.

 $(0,00045\times3600\times132,5):10\ 6=0,00021465$ т/год

Расчет продолжительности выбросов:

Максимальный расход товарного раствора гипохлорита натрия 15л/ч, объем расходных емкостей 500 л, количество расходных емкостей 2 шт. Одной емкости хватает на 33 часа работы, т.е. перегрузка осуществляется 8760:33=265 раз/год. Продолжительность перегрузки принимаем 30 мин. Продолжительность выбросов составит

 $(265\times30): 60=132,5$ ч/год.

36. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от лаборатории блока водоподготовки (источник №80)

Выбросы загрязняющих веществ от лаборатории блока водоподготовки осуществляется через вытяжные шкафы и приняты по аналогам на существующих заводах. Диаметр источника выбросов — 0,355м, высота — 10 м. Расход воздуха от вытяжных шкафов составляет 0,2 м3/ч. Режим работы — 992 часов/год.

Таблица 50

Согласовано

읟

Взам.

Подпись и дата

,		
Загрязняющее вещество	Максимально раз выброс, г/с	овый Годовой выброс, т/год
Натрий гидроксид	2,62E-05	0,000826
Азотная кислота	0,001	0,017554
Соляная кислота	0,000264	0,004634
Серная кислота	2,67E-05	0,000842

37. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от мастерской блока водоподготовки (источник №81)

Выброс от работы сварочных аппаратов.

Удельные показатели выделения загрязняющего вещества «Х», на единицу массы:

Ручная дуговая сварка сталей штучными электродами, АНО-6

Норматив образования огарков от расхода электродов, п0 – 15%;

Расход сварочных материалов всего за год, В// – 1036 кг

Расход сварочных материалов за период интенсивной работы, $B/-1.8~{\rm kr};$

Расчет выбросов загрязняющих веществ выполнен по ГОСТ Р 56164-2014 «Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов при сварочных работах на основе удельных показателей», Москва, 2015 г. (на основе удельных показателей), исходя из расхода электродов и удельных выбросов загрязняющих веществ.

	•			•	т удол
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата
	Изм.	Изм. Кол.уч.	Изм. Кол.уч. Лист	Изм. Кол.уч. Лист № док.	Изм. Кол.уч. Лист № док. Подпись

9035.1 – ПМООС 3

$$M_{bi} = BK_m^{\chi} \cdot 10^{-3} (1 - \eta)$$

где В – расход применяемых сырья и материалов, кг/ч;

 K_{m}^{χ} – удельный показатель выделяемого в атмосферу загрязняющего вещества х на единицу массы расходуемых (приготавливаемых) сырья и материалов, г/кг;

 η — степень очистки воздуха в аппарате, входящем в группу технологических агрегатов. Удельные выбросы и результаты расчета приведены в таблице 51.

Таблица 51

			До очистки		После очистки	[
Код ЗВ			Максимально разовый, г/с	REIDHOC	Максимально	Валовый выброс, т/год
123	Оксид железа	14,97	0,007485	0,015509	0,007485	0,015509
143	Марганец и его соединения	1,73	0,000865	0,001792	0,000865	0,001792

Выброс от работы станочного оборудования

Исходные данные для расчета приведены в таблице 52.

Таблица 52

Согласовано

Наименования станка	всего	одновре	раооты,	Одновременн ость
Токарно-винторезный станок 18611П. Охлаждение эмульсией с содержанием эмульсола менее 3-10%. Мощность станка: N=8 кВт		менно 1	ч/год 1460	+
Точильно-шлифовальный станок ТШ-3. Абразивная заточка режущего инструмента. Чернова заточка сверл, резцов и др. инструмента абразивным кругом диаметром 400 мм	 1	1	1095	+

Расчет выбросов проводится согласно «Методике расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выделений)», Санкт-Петербург, 2002.

Валовый выброс каждого загрязняющего вещества от металлообрабатывающего оборудования определяется по формуле:

Мвыб=3,6 К Т (1 - j) 10-3, т/год

Исходные данные и результаты расчета приведены в таблице 53

Таблица 53

обрабатыва	Тип станка	Наличие охлажде	Мощно сть станка, кВт	я работ	работ ы в	НЬ	Наименовани е вещества		Валовые выбросы, т/год
------------	---------------	--------------------	--------------------------------	------------	--------------	----	---------------------------	--	------------------------------

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Лист

				день, час					
НОМЕР ИС	ТОЧНИКА	№ 6007							
Чугун	Токарные	Эмульсо л 3-10%	8	2	365		Пыль металлическа я Эмульсол	0,00063 0,0000036	0,001656 9.46E-06
	Заточные						Пыпь		0,004993
Металл	диаметр круга 400, мм	Эмульсо л 3-10%	10	2	365	()	Пыль металлическа я	0,0029	0,007621
							Эмульсол	0,000207	0,000544

Так работы будут производится менее 20 минут в час, то согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утвержденых приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Согласно «Методики разработки (расчета) и установления нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух» утвержденной Приказом Минприроды России от 11.08.2020 № 581, для загрязняющих веществ, по которым санитарными правилами, утвержденными федеральным органом исполнительной власти, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, установлены максимальные разовые ПДК или ОБУВ, проводится расчет осредненных за 20 - 30-ти минутный интервал максимальных разовых концентраций, которые сопоставляются с максимальными разовыми ПДК или ОБУВ.

Таблица 54 – Итого по источнику

Согласовано

Взам.

	Максимально	Годовой
Загрязняющее вещество	разовый	выброс,
		т/год
диЖелезо триоксид, (железа оксид)/в пересчете на железо/(Железо сесквиоксид)	0,00367	0,02479
Марганец и его соединения/в пересчете на марганец (IV) оксид/	0,00029	0,00179
Эмульсол (смесь: вода - 97,6%; нитрит натрия - 0,2%; сода кальцинированная - 0,2%, масло минеральное - 2%)	0,00007	0,00055
Пыль абразивная	0,00063	0,00499

38. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от маслосборной емкости блока водоподготовки (источник №82)

вентиляционная труба маслосборной емкости. Помещение Источник выбросов оборудовано приточно-вытяжной вентиляции с 3-х кратным воздухообменом.

Удельный выброс масла минерального принят согласно методике «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

технологического оборудования для предприятий радиоэлектронного комплекса». СПб., 2006 г. и составяет 0,000002 г/c или $(0,000002 \times 3600 \times 8760)/106 = 0,000006 \text{ т/год}$

39. Расчеты выбросов загрязняющих веществ, поступающих в атмосферу от отделения обезвоживания блока водоподготовки (источник №6062)

Источник выбросов пыление при выгрузке обезвоженной окалины. Приток и вытяжка естественные. Выброс железа оксида принят согласно тома ПДВ существующего завода.

Таблица 55

Наименование	Максимально разовый выброс, г/с	Годовой выброс, т/год
Железа оксид	0,00243	0,00015

40. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №83)

Котельная центральной заводской лаборатории (ЦЗЛ)

Мощность 600 кВт

Два котла производительностью по 75%, т.е. 450 кВт. На каждый котел своя дымовая труба. Высота дымовой трубы +19,00 (абс.49,00м). диаметр 250 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 5274 (отопление, вентиляция и ГВС)

Расход газа в год — 365123 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Согласовано

읟

Взам.

Подпись и дата

№подл

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{H}^{p} = 8171 \text{ ккал/м3}$

Расход топлива по паспорту для $Q_{_{H}}^{_{p}}=8171$ ккал/м3 (B0). В0 = 69,23 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 365,12 тыс.м3/год В' = 19,18 л/с

 $Bp = (1 - q4/100) \cdot B = 256,70 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0.0036 = 0.05 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

$9035.1 - \Pi MOOC 3$

Максимальная: CCO' = CCO Изм' · $aT/a = 6 \text{ M} \Gamma/\text{H} \text{M} 3$ Массовая концентрация диоксида серы при a0 = 1,18. Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Максимальная: $CSO2' = CSO2 \ \text{Изм'} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Коэффициент пересчета (кп). $k\pi = 0,000001$ (для валового) kn = 0.000278 (для максимально-разового) Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2'). $MNOx = CNOx \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0.45030 \text{ T/rog}$ MNOx' = CNOx' · V_{Γ} · B_{p} ' · $k_{\Pi} = 0.02367 \text{ r/c}$ $M NO2 = 0.8 \cdot MNOx = 0.36024 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx'} = 0.01894 \,\text{r/c}$ $MNO = 0.13 \cdot MNOx = 0.05854 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx'} = 0.00308 \,\text{r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot B_{\mathcal{P}} \cdot k_{\Pi} = 0.02251 \text{ т/год}$ $MCO' = CCO' \cdot V_{\Gamma} \cdot Bp \cdot k_{\Pi} = 0{,}00118 \text{ r/c}$ Выброс диоксида серы (Mso2, Mso2'). $M SO2 = CSO2 \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0,00375 \text{ т/год}$ 읟 M SO2' = CSO2' · V_{Γ} · B_{p} · $k_{\Pi} = 0.00020 \text{ r/c}$ Взам. инв. Расчётное определение выбросов бенз(а)пирена. Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд). $K_{\mathcal{I}} = 2.6 - 3.2 \cdot (Doth - 0.5) = 1$ Подпись и дата Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр). Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, % $Kp = 4,15 \cdot 0 + 1 = 1$ Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст). Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0 Инв. № подл Лист $9035.1 - \Pi MOOC 3$ 200 Изм. Кол.уч. Лист № док. Подпись Дата

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота.

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{\scriptscriptstyle H}}^{^{p}}$ = 8171 ккал/м3 оксида углерода.

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle R}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы.

Средняя (СПОх Изм): 120 мг/нм3

Средняя (ССО Изм): 6 мг/нм3

Средняя (CSO2 Изм): 1 мг/нм3

Согласовано

Максимальная (СПОх Изм'): 120 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при а = 1,18. Средняя: CNOx = CNOx Изм \cdot ат/а = 120 мг/нм3

Средняя: CCO = CCO Изм · at/a = 6 мг/нм3

Максимальная: $CNOx' = CNOx \ Изм' \cdot at/a = 120 \ мг/нм3$ Массовая концентрация оксида углерода при a = 1.18.

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT" - 1)) \cdot Kд \cdot Kp \cdot KcT = 0,000147 \text{ мг/м3})$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vсr \cdot Bp \cdot kп$

 $M6\pi = 0.000124576 \cdot 14.62 \cdot 256.70 \cdot 0.000001 = 4.67E-07 \text{ T/год}$

 $M6\pi' = 0.000124576 \cdot 14,62 \cdot 0.05 \cdot 0.000278 = 2,457E-08 \text{ r/c}$

Таблина 56

Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,01894	0,36024
Азота оксид	0,00308	0,05854
Углерод оксид	0,00118	0,02251
Сера диоксид	0,00020	0,00375
Бенз(а)пирена	2,457E-08	4,67E-07

41. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №84)

Котельная административного корпуса (АК)

Мощность 1200 кВт

Согласовано

읟

Взам.

Подпись и дата

Три котла производительностью по 600 кВт. На каждый котел своя дымовая труба. Высота дымовой трубы +21,55 (абс.53м). диаметр 250 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 5274 (отопление, вентиляция и ГВС)

Расход газа в год — 730245 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle p}}=8171~$ ккал/м3

Расход топлива по паспорту для $Q_n^p = 8171$ ккал/м3 (B0). В0 = 138,46 м3/час

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

201

Средняя (ССО Изм): 6 мг/нм3 Максимальная (ССО Изм'): 6 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы. Средняя (CSO2 Изм): 1 мг/нм3 Максимальная (С SO2 Изм'): 1 мг/нм3 Массовая концентрация оксидов азота при a = 1,18. Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$ Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при а = 1,18. Средняя: CCO = CCO Изм · aT/a = 6 мг/нм3 Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Массовая концентрация диоксида серы при a0 = 1.18. Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Максимальная: $CSO2' = CSO2 \ \text{Изм'} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Коэффициент пересчета (кп). kn = 0.000001 (для валового) kn = 0,000278 (для максимально-разового) Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2'). $MNOx = CNOx \cdot V_{\Gamma} \cdot Bp \cdot k_{\Pi} = 0.90060 \text{ T/rog}$ MNOx' = CNOx' · V_{Γ} · Bp' · $k_{\Pi} = 0.04734$ Γ/c $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.72048 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx'} = 0.03787 \text{ r/c}$ $MNO = 0.13 \cdot MNOx = 0.11708 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx'} = 0.00615 \text{ r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot B_{\mathcal{P}} \cdot k_{\Pi} = 0.04503 \text{ т/год}$ $MCO' = CCO' \cdot V_{\Gamma} \cdot Bp \cdot k_{\Pi} = 0,00237 \text{ r/c}$ Выброс диоксида серы (Mso2, Mso2'). $M SO2 = CSO2 \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00750 \text{ т/год}$ M SO2' = CSO2' · V_{Γ} · B_{p} · k_{Π} = 0,00039 Γ/c Расчётное определение выбросов бенз(а)пирена. Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд). $K_{\mathcal{A}} = 2.6 - 3.2 \cdot (Doth - 0.5) = 1$ Лист $9035.1 - \Pi MOOC 3$ 202 Изм. Кол.уч. № док. Подпись Лист

Фактический расход топлива для $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}=8171$ ккал/м3 (B, B'). В = 730,24 тыс.м3/год

Измеренная массовая концентрация при ат = 1,18 и Q_{μ}^{p} = 8171 ккал/м3 оксидов азота.

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{_{II}}}^{_{_{p}}}$ = 8171 ккал/м3 оксида углерода.

B' = 38.35 J/c

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

 $Bp = (1 - q4/100) \cdot B = 513,41 \text{ тыс.м3/год}$

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,10$ тыс.м3/час

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1.18.

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

 $Kp = 4,15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ"): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT" - 1)) \cdot K_{\pi} \cdot K_{\pi} \cdot K_{\pi} \cdot K_{\pi}) \cdot K_{\pi} \cdot K_{\pi}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0.000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vc\Gamma \cdot Bp \cdot kп$

 $Mбп = 0,000124576 \cdot 14,62 \cdot 513,41 \cdot 0,000001 = 9,35E-07$ т/год

 $M6π' = 0.000124576 \cdot 14.62 \cdot 0.10 \cdot 0.000278 = 4.914E-08$ г/с

Таблица 57

Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,03787	0,72048
Азота оксид	0,00615	0,11708
Углерод оксид	0,00237	0,04503
Сера диоксид	0,00039	0,00750
Бенз(а)пирена	4,914E-08	9,35E-07

42. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №85, 86)

Цех по ремонту обслуживанию спецтехники

Теплогенераторы

Согласовано

읟

Взам.

Подпись и дата

Мощность 348 кВт х 4шт.=1392 Квт

Наружное исполнение, расположение у фасада – см. генплан.

Две трубы высотой +14,5 (абс.45,5), диаметр 250 мм.

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 762280 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

204

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5Низшая теплота сгорания газа, $Q_{\mu}^{p} = 8171 \text{ ккал/м3}$ Расход топлива по паспорту для $Q_n^p = 8171$ ккал/м3 (B0). В0 = 79.8 м3/час Фактический расход топлива для $Q_{\scriptscriptstyle H}^{\scriptscriptstyle P}=8171$ ккал/м3 (B, B'). В = 381,12 тыс.м3/год B' = 22.10 m/c $Bp = (1 - q4/100) \cdot B = 267,96 \text{ тыс.м3/год}$ $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,06$ тыс.м3/час Коэффициент избытка воздуха в топке для проекта a = 1,18. Коэффициент избытка воздуха при замерах at = 1,18. Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 оксидов азота. Средняя (СПОх Изм): 120 мг/нм3 Максимальная (CNOx Изм'): 120 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода. Средняя (ССО Изм): 6 мг/нм3 Максимальная (ССО Изм'): 6 мг/нм3 Измеренная массовая концентрация при ат = 1,18 и $Q_{\mu}^{p} = 8171$ ккал/м3 диоксида серы. Средняя (CSO2 Изм): 1 мг/нм3 Максимальная (С SO2 Изм'): 1 мг/нм3 Массовая концентрация оксидов азота при a = 1,18. Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$ Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при а = 1,18. Средняя: $CCO = CCO \ \text{Изм} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$ Массовая концентрация диоксида серы при a0 = 1,18. Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Максимальная: $CSO2' = CSO2 \ \text{Изм}' \cdot \text{ат/a} = 1 \ \text{мг/нм3}$ Коэффициент пересчета (кп). kn = 0.000001 (для валового) $k\pi = 0.000278$ (для максимально-разового) Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2'). MNOx = CNOx \cdot V $_{\Gamma}$ \cdot Вр \cdot k $_{\Pi}$ = 0,47004 т/год MNOx' = CNOx' · V_{Γ} · B_{p} ' · $k_{\Pi} = 0.02728 \text{ r/c}$ $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.37603 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx'} = 0.02183 \text{ r/c}$ $MNO = 0.13 \cdot MNOx = 0.06110 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx'} = 0.00355 \text{ r/c}$ Выброс оксида углерода (МСО, МСО'). $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0.02350 \text{ т/год}$ MCO' = CCO' · V_{Γ} · B_{p} · $k_{\Pi} = 0.00136 \text{ r/c}$ Выброс диоксида серы (Mso2, Mso2').

 $9035.1 - \Pi MOOC 3$

Исходные данные:

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

Изм. Кол.уч.

Лист № док. Подпись

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

M SO2 = CSO2 · V
$$_{\Gamma}$$
 · Вр · k_{Π} = 0,00392 т/год M SO2 · = CSO2 · · V $_{\Gamma}$ · Вр · k_{Π} = 0,00023 г/с

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\text{Д}} = 2.6 - 3.2 \cdot (\text{Doth} - 0.5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

$$Kp = 4.15 \cdot 0 + 1 = 1$$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

$$KcT = KcT' / 0.14 + 1 = 1$$

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot Kд \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\pi = Cб\pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

Mδ $\Pi = C$ δ $\Pi \cdot V$ с $\Gamma \cdot B$ р $\cdot k$ Π

 $Mб\pi = 0.000124576 \cdot 14,62 \cdot 267,96 \cdot 0.000001 = 4,88E-07$ т/год

 $M6π' = 0.000124576 \cdot 14.62 \cdot 0.06 \cdot 0.000278 = 2.832E-08 Γ/c$

Таблица 58

Согласовано

읟

Взам.

Подпись и дата

Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,02183	0,37603
Азота оксид	0,00355	0,06110
Углерод оксид	0,00136	0,02350
Сера диоксид	0,00023	0,00392
Бенз(а)пирена	2,832E-08	4,88E-07

43. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №87)

Цех по ремонту обслуживанию спецтехники

Газовый настенный котел GAZ 600 W

Мощность 24 кВт

Высота дымовой трубы +5,0 (абс.36,0), диаметр 80 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год — 13373 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах

l							Γ
							l
	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	l

 $9035.1 - \Pi MOOC 3$

производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{_{_{\mathit{H}}}}^{_{\mathit{p}}}=8171$ ккал/м3

Расход топлива по паспорту для $Q_n^p = 8171$ ккал/м3 (B0). В0 = 2.8 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 13,37 тыс.м3/год В' = 0,78 л/с

 $Bp = (1 - q4/100) \cdot B = 9,40 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,00 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и Q_{μ}^{p} = 8171 ккал/м3 оксидов азота.

Средняя (СООх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle n}^{\scriptscriptstyle p}$ = 8171 ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle R}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Согласовано

읟

Взам. инв.

Подпись и дата

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при а = 1,18.

Средняя: $CNOx = CNOx \ H_{3M} \cdot a_{T/a} = 120 \ Mr/HM3$

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

Средняя: CCO = CCO Изм · at/a = 6 мг/нм3

Максимальная: CCO' = CCO Изм' · at/a = 6 M t/H M 3

Массовая концентрация диоксида серы при a0 = 1,18.

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Максимальная: CSO2' = C SO2 $\text{Изм'} \cdot \text{ат/a} = 1 \text{ мг/нм3}$

Коэффициент пересчета (кп).

 $k\pi = 0.000001$ (для валового)

kn = 0,000278 (для максимально-разового)

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

MNOx = CNOx · V $_{\Gamma}$ · Вр · kп = 0,01649 т/год

MNOx' = CNOx' · V_{Γ} · B_{p} ' · $k_{\Pi} = 0.00096 \text{ r/c}$

 $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.01319 \text{ т/год}$

M NO2' = $0.8 \cdot \text{MNOx'} = 0.00077 \text{ r/c}$

 $MNO = 0.13 \cdot MNOx = 0.00214 \text{ т/год}$

1 1			ł		
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

MNO' = $0.13 \cdot \text{MNOx'} = 0.00012 \,\text{r/c}$

Выброс оксида углерода (МСО, МСО').

 $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00082 \text{ т/год}$

 $MCO' = CCO' \cdot V_{\Gamma} \cdot Bp \cdot k_{\Pi} = 0,00005 \text{ r/c}$

Выброс диоксида серы (Mso2, Mso2').

 $M SO2 = CSO2 \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00014 \text{ т/год}$

M SO2' = CSO2' · V_{Γ} · B_{p} · k_{Π} = 0,00001 Γ/c

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\mathcal{A}} = 2,6 - 3,2 \cdot (Doth - 0,5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

 $Kp = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

 $K_{CT} = K_{CT}$, /0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 kBt/m3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ"): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot Kд \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cбп = Cбп' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vc\Gamma \cdot Bp \cdot kп$

 $Mб\pi = 0.000124576 \cdot 14.62 \cdot 9.40 \cdot 0.000001 = 1.71E-08$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.00 \cdot 0.000278 = 9.938E-10 \text{ r/c}$

Таблина 59

Согласовано

읟

Наименование вещества	Максимально раз выброс, г/с	вовый Валовый выброс, т/год
Азота диоксид	0,00077	0,01319
Азота оксид	0,00012	0,00214
Углерод оксид	0,00005	0,00082
Сера диоксид	0,00001	0,00014
Бенз(а)пирена	9,938E-10	1,71E-08

44. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №88, 89)

Вальцетокарная мастерская

Теплогенераторы

Мощность 348 кВт x 9шт.= 2088 Квт

Наружное исполнение

Шесть труб (3 по 2 сблокированны) высотой +25,0 (абс.60,0), диаметр 250 мм.

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 9972288 нм3

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

 $9035.1 - \Pi MOOC 3$

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle P}}=8171$ ккал/м3

Расход топлива по паспорту для $Q_n^p = 8171$ ккал/м3 (B0). В0 = 1044 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 4986,14 тыс.м3/год В' = 289,19 л/с

 $Bp = (1 - q4/100) \cdot B = 3505,59 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,73$ тыс.м3/час

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах $a_{\rm T} = 1,18$.

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Согласовано

읟

Взам. инв.

Подпись и дата

нв. № подл

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle P}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18.

Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

Средняя: $CCO = CCO \ \text{Изм} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$

Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$

Массовая концентрация диоксида серы при a0 = 1.18.

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Максимальная: CSO2' = C SO2 Изм' · at/a = 1 M Г/H M 3

Коэффициент пересчета (кп).

kп = 0.000001 (для валового)

kn = 0.000278 (для максимально-разового)

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

MNOx = CNOx \cdot V $_{\Gamma}$ \cdot Bp \cdot k $_{\Pi}$ = 6,14937 т/год

MNOx' = CNOx' · V Γ · Bp' · k Π = 0,35694 Γ /c

 $M \text{ NO2} = 0.8 \cdot \text{MNOx} = 4.91950 \text{ т/год}$

M NO2' = $0.8 \cdot \text{MNOx'} = 0.28555 \text{ r/c}$

 $MNO = 0.13 \cdot MNOx = 0.79942 \text{ т/год}$

MNO' = $0.13 \cdot \text{MNOx'} = 0.04640 \text{ r/c}$

Выброс оксида углерода (МСО, МСО').

 $MCO = CCO \cdot V_{\Gamma} \cdot B_{\mathcal{P}} \cdot k_{\Pi} = 0.30747 \text{ т/год}$

MCO' = CCO' · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,01785 $_{\Gamma}$ /c

Выброс диоксида серы (Mso2, Mso2').

M SO2 = CSO2 · V $_{\Gamma}$ · Вр · k π = 0,05124 т/год

M SO2' = CSO2' · V_{Γ} · B_{p} · k_{Π} = 0,00297 $_{\Gamma}/c$

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\text{Д}} = 2.6 - 3.2 \cdot (\text{Doth} - 0.5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

 $Kp = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Qv = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ"): 1;

 $Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot Kд \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $C6\pi = C6\pi' \cdot aT''/a = 0,000124576 \text{ M}\Gamma/\text{M}3$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vcr \cdot Bp \cdot kп$

 $Mбп = 0,000124576 \cdot 14,62 \cdot 3505,59 \cdot 0,000001 = 6,38E-06$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.73 \cdot 0.000278 = 3.706E-07 \text{ r/c}$

Таблина 60

тионици оо		
Наименование вещества	Максимально выброс, г/с	разовый Валовый выброс, т/год
Азота диоксид	0,28555	4,91950
Азота оксид	0,04640	0,79942
Углерод оксид	0,01785	0,30747
Сера диоксид	0,00297	0,05124
Бенз(а)пирена	3,706E-07	6,38E-06

45. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №90)

Тепловентиляторы

Мощность 55,5 кВт х3=166,5 кВт

Одна труба на высоте +25.0 (абс. 60.0), диаметр 200 мм.

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

ለ	035	1	TTA	10	\mathbf{O}	2
ч	ロッフ	I —		/ ()		•

Расход газа в год — 65466 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle p}}=8171~$ ккал/м3

Расход топлива по паспорту для $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle P}}=8171$ ккал/м3 (B0). В0 = 13,71 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). B = 65,48 тыс.м3/год B' = 3.80 л/с

 $Bp = (1 - q4/100) \cdot B = 46,04 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0.0036 = 0.01 \text{ TMC.M}3/\text{час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1.18.

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Согласовано

읟

Взам. инв.

Подпись и дата

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18.

Средняя: $CNOx = CNOx Изм \cdot at/a = 120 мг/нм3$

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$

Массовая концентрация оксида углерода при а = 1,18.

Средняя: CCO = CCO Изм · aT/a = 6 мг/нм3

Максимальная: $CCO' = CCO \ \text{Изм'} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$

Массовая концентрация диоксида серы при a0 = 1,18.

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Максимальная: $CSO2' = CSO2 \ Изм' \cdot at/a = 1 \ мг/нм3$

						Γ
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	
						_

 $9035.1 - \Pi MOOC 3$

Коэффициент пересчета (кп).

 $k\pi = 0.000001$ (для валового)

kn = 0,000278 (для максимально-разового)

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

MNOx = CNOx · V $_{\Gamma}$ · Вр · kп = 0,08075 т/год

MNOx' = CNOx' · V_{Γ} · Bp' · $k\pi = 0,00469 \text{ r/c}$

 $M NO2 = 0.8 \cdot MNOx = 0.06460 \text{ т/год}$

M NO2' = $0.8 \cdot \text{MNOx'} = 0.00375 \text{ r/c}$

 $MNO = 0.13 \cdot MNOx = 0.01050 \text{ т/год}$

MNO' = $0.13 \cdot \text{MNOx'} = 0.00061 \text{ r/c}$

Выброс оксида углерода (МСО, МСО').

 $MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00404 \text{ т/год}$

MCO' = CCO' · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,00023 $_{\Gamma}$ /c

Выброс диоксида серы (Mso2, Mso2').

M SO2 = CSO2 · V $_{\Gamma}$ · Вр · k_{Π} = 0,00067 т/год

M SO2' = CSO2' · V_{Γ} · B_{p} · k_{Π} = 0,00004 Γ/c

Расчётное определение выбросов бенз(а)пирена.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (Кд).

 $K_{\text{Д}} = 2.6 - 3.2 \cdot (\text{Doth} - 0.5) = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (Кр).

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %

 $Kp = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст).

Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0

KcT = KcT' / 0.14 + 1 = 1

Теплонапряжение топочного объема Ov = 1400 кВт/м3

Концентрация бенз(а)пирена (Сбп').

Коэффициент избытка воздуха на выходе из топки (аТ''): 1;

 $C6\pi' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT" - 1)) \cdot Kд \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}$

Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18

 $Cб\Pi = Cб\Pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}$

Выброс бенз(а)пирена (Мбп, Мбп').

 $Mбп = Cбп \cdot Vc\Gamma \cdot Bp \cdot kп$

 $Mб\pi = 0.000124576 \cdot 14.62 \cdot 46.04 \cdot 0.000001 = 8.38E-08$ т/год

 $M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.01 \cdot 0.000278 = 4.866E-09 \text{ r/c}$

Таблица 61

Согласовано

읟

Наименование вещества	Максимально разовыброс, г/с	вый Валовый выброс, т/год
Азота диоксид	0,00375	0,06460
Азота оксид	0,00061	0,01050
Углерод оксид	0,00023	0,00404
Сера диоксид	0,00004	0,00067
Бенз(а)пирена	4,866E-09	8,38E-08

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

9035.1 – ПМООС 3

Лист

КПП

Газовый настенный котел GAZ 600

Мощность 24 кВт

Расположение на отм. 0,000 (абс.35,0)

Высота дымовой трубы +5,0 (абс.36,0), диаметр 80 мм

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 13373 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Согласовано

읟

Взам. инв.

Подпись и дата

Плотность топлива, $\rho = 0.7066$ кг/н.м3

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{\mu}^{p} = 8171 \text{ ккал/м3}$

Расход топлива по паспорту для $Q_{_{H}}^{_{p}}=8171$ ккал/м3 (B0). В0=2.8 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 13,37 тыс.м3/год В' = 0.78 л/с

 $Bp = (1 - q4/100) \cdot B = 9,40 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,00 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах ат = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{_{\it H}}}^{_{\it P}}$ = 8171 ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{\scriptscriptstyle H}^{\scriptscriptstyle p}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Массовая концентрация оксидов азота при a = 1,18.

Средняя: $CNOx = CNOx Изм \cdot aT/a = 120 мг/нм3$

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Лист

213

Изм. Кол.уч.

Лист № док. Подпись Дата

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при a = 1,18.

Максимальная: ССО' = ССО Изм' · at/a = 6 мг/нм3 Массовая концентрация диоксида серы при a0 = 1,18.

Максимальная: $CSO2' = C SO2 Изм' \cdot at/a = 1 мг/нм3$

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

Средняя: CCO = CCO Изм · aT/a = 6 мг/нм3

Средняя: $CSO2 = CSO2 \ Изм \cdot at/a = 1 \ мг/нм3$

kп = 0,000278 (для максимально-разового)

M NO2 = $0.8 \cdot \text{MNOx} = 0.01319 \text{ т/год}$ M NO2' = $0.8 \cdot \text{MNOx}' = 0.00077 \text{ г/c}$ MNO = $0.13 \cdot \text{MNOx} = 0.00214 \text{ т/год}$ MNO' = $0.13 \cdot \text{MNOx}' = 0.00012 \text{ г/c}$

MNOx = CNOx \cdot V $_{\Gamma}$ \cdot Bp \cdot k $_{\Pi}$ = 0,01649 т/год MNOx' = CNOx' \cdot V $_{\Gamma}$ \cdot Bp' \cdot k $_{\Pi}$ = 0,00096 г/с

Коэффициент пересчета (kп). kn = 0.000001 (для валового)

Углерод оксид	0,00005	0,00082
Сера диоксид	0,00001	0,00014
Бенз(а)пирена	9,938E-10	1,71E-08

46. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №92)

Руфтопы SKNL B300NM39E (крышные кондиционеры с газовым нагревом)

Расположение смотреть на плане водоподготовки

Мощность 117кВтх17шт.=1989 кВт

Расположение на отм. +16.5 (абс.51,5)

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 1096091 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0,5

Низшая теплота сгорания газа, $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle P}}=8171~$ ккал/м3

Расход топлива по паспорту для $Q_{_{\rm H}}^{_{p}}=8171~{\rm ккал/m3}$ (B0). В0 = 229,5 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). В = 1096,09 тыс.м3/год В' = 63,57 л/с

 $Bp = (1 - q4/100) \cdot B = 770,63 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,16$ тыс.м3/час

Коэффициент избытка воздуха в топке для проекта a = 1,18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (СПОх Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{H}}^{_{p}}$ = 8171 ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

№ док. Подпись

Лист

Максимальная (С SO2 Изм'): 1 мг/нм3

	Подпись и дата Взам. инв. №	Инв. N <u>е</u> подл
--	-----------------------------	----------------------

Согласовано

		9035.1 – ПМООС 3
		9035.1 - HMOOC 3

```
MNOx = CNOx · V<sub>Γ</sub> · Bp · k<sub>Π</sub> = 1,22257 т/год
                MNOx' = CNOx' · V_{\Gamma} · Bp' · k\pi = 0.07096 \text{ r/c}
                M \text{ NO2} = 0.8 \cdot \text{MNOx} = 0.97805 \text{ т/год}
                M NO2' = 0.8 \cdot \text{MNOx'} = 0.05677 \text{ r/c}
                MNO = 0.13 \cdot MNOx = 0.15893 \text{ т/год}
                MNO' = 0.13 \cdot \text{MNOx'} = 0.00923 \text{ r/c}
                Выброс оксида углерода (МСО, МСО').
                MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0.06113 \text{ т/год}
                MCO' = CCO' \cdot V_{\Gamma} \cdot Bp \cdot k_{\Pi} = 0,00355 \text{ r/c}
                Выброс диоксида серы (Mso2, Mso2').
                M SO2 = CSO2 · V_{\Gamma} · Вр · k\pi = 0,01019 т/_{\Gamma}од
                M SO2' = CSO2' · V_{\Gamma} · B_{p} · k_{\Pi} = 0,00059 \Gamma/c
                Расчётное определение выбросов бенз(а)пирена.
                Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в
                продуктах сгорания (Кд).
                K_{\mathcal{A}} = 2,6 - 3,2 \cdot (Doth - 0,5) = 1
                Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию
Согласовано
                бенз(а)пирена в продуктах сгорания (Кр).
                Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %
                Kp = 4,15 \cdot 0 + 1 = 1
                Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию
                бенз(а)пирена в продуктах сгорания (Кст).
                Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0
                KcT = KcT' / 0.14 + 1 = 1
                Теплонапряжение топочного объема Ov = 1400 кВт/м3
                Концентрация бенз(а)пирена (Сбп').
 읟
                Коэффициент избытка воздуха на выходе из топки (аТ''): 1;
                Cбп' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT'' - 1)) \cdot K_{\mathcal{I}} \cdot Kp \cdot Kct = 0,000147 \text{ мг/м3}
 Взам.
                Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18
                Cб\pi = Cб\pi' \cdot aT''/a = 0,000124576 \text{ мг/м3}
                Выброс бенз(а)пирена (Мбп, Мбп').
                Mбп = Cбп \cdot Vcr \cdot Bp \cdot kп
 Подпись и дата
                Mбп = 0,000124576 \cdot 13,22 \cdot 770,63 \cdot 0,000001 = 1,27E-06 т/год
                M6\pi' = 0.000124576 \cdot 13.22 \cdot 0.16 \cdot 0.000278 = 7.367E-08 \text{ r/c}
                Таблица 63
                                                                             разовый Валовый выброс, т/год
                                                  Максимально
             Наименование вещества
                                                   выброс, г/с
                                                                                                                        Лист
                                                                       9035.1 - \Pi MOOC 3
                                                                                                                         215
          Изм. Кол.уч.
                      Лист № док. Подпись Дата
```

Массовая концентрация оксидов азота при a = 1,18. Средняя: CNOx = CNOx Изм · a = 120 мг/нм3

Максимальная: ССО' = ССО Изм' · aT/a = 6 MT/HM3 Массовая концентрация диоксида серы при a0 = 1,18.

Максимальная: $CSO2' = CSO2 \ \text{Изм'} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

Средняя: CCO = CCO Изм · aT/a = 6 мг/нм3

Средняя: $CSO2 = CSO2 \ \text{Изм} \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

kn = 0.000278 (для максимально-разового)

Коэффициент пересчета (kп). kn = 0.000001 (для валового)

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при a = 1,18.

Азота диоксид	0,05677	0,97805
Азота оксид	0,00923	0,15893
Углерод оксид	0,00355	0,06113
Сера диоксид	0,00059	0,01019
Бенз(а)пирена	7,367E-08	1,27E-06

47. Расчет выбросов загрязняющих веществ в атмосферу при сжигании газа (Источник №93)

Конденсационный котел Logamax plus GB162-100V2

Мощность 100 кВт

Расположение на отм. 0,000(абс.35,00), труба +17м (абс.52,00)

Отопительный сезон 199 сут/год.

Часы работы в год – 4776

Расход газа в год – 56332 нм3

Расчет выполнен в соответствии с «Методикой определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г., методическим письмом НИИ Атмосфера № 335/33-07 от 17.05.2000 «О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»», методическим письмом НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000», «Методическим пособие по расчёту, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух», Санкт-Петербург 2012г.

Исходные данные:

Согласовано

읟

Взам. инв.

Подпись и дата

Плотность топлива, $\rho = 0.7066 \text{ кг/н.м3}$

Потери тепла в следствии механической неполноты сгорания, q4 = 0.5

Низшая теплота сгорания газа, $Q_{_{H}}^{^{p}} = 8171 \text{ ккал/м3}$

Расход топлива по паспорту для $Q_{_{\scriptscriptstyle H}}^{_{\scriptscriptstyle P}}=8171$ ккал/м3 (B0). В0 = 11,79 м3/час

Фактический расход топлива для $Q_n^p = 8171$ ккал/м3 (B, B'). B = 56,31 тыс.м3/год B' = 3.27 л/с

 $Bp = (1 - q4/100) \cdot B = 39,59 \text{ тыс.м3/год}$

 $Bp' = (1 - q4/100) \cdot B' \cdot 0,0036 = 0,01 \text{ тыс.м3/час}$

Коэффициент избытка воздуха в топке для проекта a = 1.18.

Коэффициент избытка воздуха при замерах at = 1,18.

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{\rm H}}^{_{p}}$ = 8171 ккал/м3 оксидов азота.

Средняя (СПОх Изм): 120 мг/нм3

Максимальная (CNOx Изм'): 120 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_{_{\scriptscriptstyle H}}^{^{p}}$ = 8171 ккал/м3 оксида углерода.

Средняя (ССО Изм): 6 мг/нм3

Максимальная (ССО Изм'): 6 мг/нм3

Измеренная массовая концентрация при ат = 1,18 и $Q_n^p = 8171$ ккал/м3 диоксида серы.

Средняя (CSO2 Изм): 1 мг/нм3

Максимальная (С SO2 Изм'): 1 мг/нм3

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	

	_		
9035.	.1 —	пмо	C(3)

```
M NO2 = 0.8 \cdot MNOx = 0.05556 \text{ т/год}
              M NO2' = 0.8 \cdot \text{MNOx'} = 0.00322 \text{ r/c}
              MNO = 0.13 \cdot MNOx = 0.00903 \text{ T/год}
              MNO' = 0.13 \cdot \text{MNOx'} = 0.00052 \text{ r/c}
              Выброс оксида углерода (МСО, МСО').
              MCO = CCO \cdot V_{\Gamma} \cdot Bp \cdot k\pi = 0,00347 \text{ т/год}
              MCO' = CCO' \cdot V_{\Gamma} \cdot B_{\mathfrak{p}} \cdot k_{\Pi} = 0,00020 \, r/c
              Выброс диоксида серы (Mso2, Mso2').
              M SO2 = CSO2 \cdot V_{\Gamma} \cdot Bp \cdot k\Pi = 0,00058 \text{ т/год}
              M SO2' = CSO2' · V_{\Gamma} · B_{p} · k_{\Pi} = 0,00003 \Gamma/c
              Расчётное определение выбросов бенз(а)пирена.
              Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в
              продуктах сгорания (Кд).
              K_{\text{Д}} = 2,6 - 3,2 \cdot (\text{Doth} - 0,5) = 1
              Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию
              бенз(а)пирена в продуктах сгорания (Кр).
              Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0, %
              Kp = 4.15 \cdot 0 + 1 = 1
              Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию
              бенз(а)пирена в продуктах сгорания (Кст).
읟
              Доля воздуха, подаваемая помимо горелок (над ними) Кст': 0
              KcT = KcT' / 0.14 + 1 = 1
Взам.
              Теплонапряжение топочного объема Ov = 1400 кВт/м3
              Концентрация бенз(а)пирена (Сбп').
              Коэффициент избытка воздуха на выходе из топки (аТ"): 1;
              C6\pi' = 0,000001 \cdot (((0,11 \cdot Qv - 7)/Exp(3.5 \cdot (aT" - 1)) \cdot K_{\mathcal{A}} \cdot Kp \cdot Kc_{\mathcal{A}} = 0,000147 \text{ мг/м3}
Подпись и дата
              Концентрация бенз(а)пирена, приведенная к избытку воздуха а = 1,18
              Cб\pi = Cб\pi' \cdot aT''/a = 0.000124576 \text{ мг/м3}
              Выброс бенз(а)пирена (Мбп, Мбп').
              Mбп = Cбп \cdot Vcr \cdot Bp \cdot kп
              Mб\pi = 0.000124576 \cdot 14.62 \cdot 39.59 \cdot 0.000001 = 7.21E-08 т/год
              M6\pi' = 0.000124576 \cdot 14.62 \cdot 0.01 \cdot 0.000278 = 4.185E-09 \text{ r/c}
                                                                                                                       Лист
                                                                      9035.1 - \Pi MOOC 3
                                                                                                                        217
        Изм. Кол.уч.
                    Лист № док. Подпись Дата
```

Массовая концентрация оксидов азота при a = 1,18. Средняя: CNOx = CNOx Изм · at/a = 120 мг/нм3

Максимальная: ССО' = ССО Изм' · aT/a = 6 MF/HM3 Массовая концентрация диоксида серы при a0 = 1,18.

Максимальная: $CSO2' = CSO2 \ \text{Изм}' \cdot \text{ат/a} = 1 \ \text{мг/нм3}$

Выброс оксидов азота (MNOx, MNOx', MNO, MNO', MNO2, MNO2').

Средняя: $CCO = CCO \ \text{Изм} \cdot \text{ат/a} = 6 \ \text{мг/нм3}$

Средняя: $CSO2 = CSO2 \ Изм \cdot at/a = 1 \ мг/нм3$

 $k\pi = 0.000278$ (для максимально-разового)

MNOx = CNOx · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,06945 т/год MNOx · = CNOx · V $_{\Gamma}$ · Bp · k $_{\Pi}$ = 0,00403 г/с

Коэффициент пересчета (kп). kn = 0.000001 (для валового)

Согласовано

Максимальная: $CNOx' = CNOx Изм' \cdot at/a = 120 мг/нм3$ Массовая концентрация оксида углерода при a = 1,18.

Таблица 65

Наименование вещества	Максимально р выброс, г/с	зовый Валовы	й выброс, т/год
Азота диоксид	0,00322	0,05556	
Азота оксид	0,00052	0,00903	
Углерод оксид	0,00020	0,00347	
Сера диоксид	0,00003	0,00058	
Бенз(а)пирена	4,185E-09	7,21E-0	8

48. Расчет выбросов загрязняющих веществ от лаборатории (Источник №94) Параметры источника приняты на основании тома ПДВ действующего завода.

Таблица 70

Код	Наименование вещества	Максимально разовый выброс, г/с	Валовый выброс, т/год
0123	Железа оксид	0,0011416	0,047565
0150	Натрий гидроксид	0,0000011	0,000035
0302	Азотная кислота (по молекуле HNO3)	0,0000083	0,000263
0316	Водород хлорид	0,0000250	0,000788
0322	Серная кислота	2,78E-08	0,000001
2930	Пыль абразивная (Корунд белый, Монокорунд)	0,0007000	0,029434

49. Расчет выбросов загрязняющих веществ от лаборатории (Источник №95) Параметры источника приняты на основании тома ПДВ действующего завода.

Таблица 71

Согласовано

Код	Наименование вещества	Максимально разовый выброс, г/с	Валовый выб	рос
2704	Бензин (нефтяной, малосернистый)	0,0007350	0,023179	
0416	Смесь предельных углеводородов С6Н14-С10Н22	0,0000500	0,000134	

50. Расчет выбросов загрязняющих веществ от сбросной свечи (Источник №96) Одновременно продувается одна свеча. Исходные данные и результаты расчета приведены в таблице 72.

Таблица 72

Расчетная величина	Наименование методического документа	Расчетная формула	Результат
Исходные данные для расчета			
Температура газа, Т, К			273
Плотность газа, g, кг/м куб.			0,7066
Периодичность операций п, раз			1
вгод			1

14	16		No	D	
изм	. кол.уч.	ЛИСТ	№ док.	Подпись	дата

9035.1 – ПМООС 3

Лист218

Расчетная величина	Наименование методического документа	Расчетная формула	Результат
Потери газа при продувке отключенного учаска, Vпр, м куб./ год			3
Диаметр свечи, Осв, м			0,03
метана. k	Волков М.М. и др. Справочник		1,31
Удельная газовая постоянная для метана R, Дж/кг К	работника газовой промышленности. М.: Недра, 1989 г.		519,6
Результаты расчета			•
Содержание этилмеркапана в газе, m, г/м куб.			0,016
Мощность выброса газа через 1 свечу с учетом 20-ти минутного осреднения, Мсh, г/с		$Mch = V\pi p * g * 1000/1200$	1,7665
Валовый выброс газа через 1 свечу, Gch, т/год		Gch = Vпр*n*g/1000	0,00212
Мощность выброса этилмеркапана через 1 свечу с учетом 20-ти минутного осреднения, Mrsh, г/с		Mrsh = Vπp*m/1200	0,00004
Валовый выброс этилмеркапана через 1 свечу, Grsh, т/год		Grsh = $V\pi p*m/1000000$	0,000000048

Аварийный дизель-генератор (Источник №97)

На случай аварийного отключения электроэнергии на территории завода предусматривается установка стационарной дизель-генератора мощностью 900 кВт.

Годовое количество часов работы дизель-генератора на технологическую прокрутку -30 ч. Работа дизель-генератора осуществляется на 30 % нагрузке 1 раз в месяц. Расход дизельного топлива 2,945 т/год.

Расчет выполнен в соответствии с ГОСТ Р 56163—2019 «Метод расчета выбросов загрязняющих веществ в атмосферу стационарными дизельными установками (новыми и после капитального ремонта) различной мощности и назначения при их эксплуатации».

Максимальный массовый выброс/-го вещества M_i г/с, стационарной дизельной установкой вычисляют по формуле:

$$M_i = \frac{e_{Mi}P_3}{3600} \tag{5}$$

где e_{Mi} — выброс і-го вредного вещества на единицу полезной работы стационарной дизельной установки в режиме эксплуатационной мощности, г/кВт • ч;

 P_9 — эксплуатационная мощность стационарной дизельной установки, значение которой указано в технической документации предприятия-изготовителя. Если в технической документации не указано значение эксплуатационной мощности, то в качестве P_9 принимают значение номинальной мощности стационарной дизельной установки Ne, кВт; 1/3600 — коэффициент пересчета часов в секунды.

Так как источник выброса аварийный и в течении года в для проверки работоспособности агрегата ежегодно осуществляется его запуск с прогонкой в течение менее 20 минут, то

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Согласовано

9035.1 – ПМООС 3

Лист

согласно «Методы расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе» утверждены приказом Минприроды России от 06.06.2017г. № 273, п.п. 5.4, максимально разовый выброс дополнительно осредняется к 20-ти минутному интервалу.

Валовый выброс і-го вещества за год $W_{\ni i}$,т/г, стационарной дизельной установкой вычисляют по формуле:

$$W_{3i} = \frac{q_{3i}G_{\rm T}}{1000} \tag{6}$$

где q_{3i} — выброс i-го вредного вещества, приходящегося на 1 кг дизельного топлива при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, г/кг топлива;

 $G_{\rm T}$ — расход топлива стационарной дизельной установкой за год (приведен в отчетных данных об эксплуатации установки), т;

1/1000 — коэффициент пересчета килограммов в тонны.

Исходные данные и результаты расчета приведены в таблице73.

Таблица 73

Таолица 73									
Группа Б	CO	NOX	NO2	NO	СН	C	SO2	CH2O	БП
Выброс, г/кВт • ч	I								
С 2021 г.	3,5	6	-	-	0,4	0,3	0,14	0,04	4,00E-06
г/с	0,00073	0,00125	0,001	0,00016	8,3E-05	6,3E-05	2,9E-05	8,3E-06	8,3E-10
Выброс, г/кг топл	пива								
С 2021 г.	14,6	25,2	-	-	1,68	1,32	0,6	0,17	1,7E-05
т/год	42,997	74,214	59,3712	9,64782	4,9476	3,8874	1,767	0,50065	5E-05

Подпись и дата Взам. инв. №										
H										
H										
ись и дата	-									
Подп										
Инв. № подл										
Инв.	\vdash	и Пист № п	ок. Подпись	Дата		90	035.1 – П	MOOC 3		Лист 220

Инв. № подл	Подпись и дата	Взам. инв. №

Лист

№ док.

Подпись

Дата

9051- IIMOOC

Приложение 14

Расчет шума на период эксплуатации

Дневное время суток

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2021 ФИРМА "ИНТЕГРАЛ" Источник данных: Эколог-Шум, версия 2.6.0.4670 (от 20.10.2022) [3D] Серийный номер 05140202, ООО "ЭАЛ "СФЕРА"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Координаты точки		очки	Уровни зв						чае R =			вных	La.экв	В
		X (M)	Y (M)	Высота подъема (м)	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		
004	Узел перегрузки лома черных металлов	1574.40	1843.40	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
005	Узел перегрузки лома черных металлов	1348.90	1579.90	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
006	Узел перегрузки лома черных металлов	1258.90	1387.40	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
007	Узел перегрузки лома черных металлов	1669.30	1812.40	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
008	Узел перегрузки лома черных металлов	906.40	1051.10	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
009	Узел перегрузки лома черных металлов	799.10	924.60	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
010	Узел перегрузки лома черных металлов	632.40	732.70	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
011	Узел перегрузки лома черных металлов	663.80	587.70	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
012	ЭД сварка	667.80	583.50	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
013	Пресс-ножницы	1424.50	1677.50	0.00		75.0	75.0	85.0	93.0	98.0	87.0	91.0	79.0	77.0	97.5	Да
014	ЭД сварка	1002.00	1193.00	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
015	Газовая резка	1203.00	1401.00	0.00		55.2	55.2	63.2	76.2	80.2	74.2	66.2	60.2	53.2	79.5	Да
016	ДСП, период плавления	1262.50	1132.50	0.00		127.0	127.0	125.0	123.0	129.0	123.0	120.0	114.0	103.0	128.9	Да
017	ДСП, окислительный период	1267.50	1154.50	0.00		113.0	113.0	123.0	119.0	119.0	114.0	108.0	103.0	104.0	119.6	Да
018	ДСП, восстановительный период	1279.00	1145.00	0.00		108.0	108.0	122.0	106.0	113.0	110.0	104.0	94.0	77.0	114.4	Да
019	ЭД сварка	1293.00	1130.00	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
020	Завалка шихты	1289.00	1156.50	0.00		101.0	101.0	106.0	111.0	109.0	101.0	91.0	77.0	75.0	108.5	Да
021	Двигатель	1296.50	1151.00	0.00		51.0	51.0	68.0	73.0	66.0	74.5	68.0	71.0	70.0	78.1	Да
022	Главный привод стана	1272.50	1154.00	0.00		103.0	103.0	106.0	110.0	104.0	104.0	101.0	86.0	92.0	108.5	Да
023	Ножницы	1335.00	1220.00	0.00		86.0	86.0	90.0	91.0	95.0	93.0	92.0	76.0	69.0	97.7	Да
024	Ножницы	1337.00	1207.50	0.00		86.0	86.0	90.0	91.0	95.0	93.0	92.0	76.0	69.0	97.7	Ла
025	Станок настольно-сверлильный	1405.00	1291.00	0.00		70.0	70.0	69.0	72.0	71.0	78.0	78.0	75.0	74.0	83.3	Да
026	Станок настольно-сверлильный	1422.00	1289.50	0.00		70.0	70.0	69.0	72.0	71.0	78.0	78.0	75.0	74.0	83.3	Да
027	Кран	1259.50	1143.50	0.00		95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
028	Черновая клеть	1253.50	1140.00	0.00		109.0	109.0	107.0	108.0	106.0	99.0	94.0	85.0	79.0	106.1	Да
029	Чистовая клеть	1320.50	1221.50	0.00		97.0	97.0	106.0	106.0	107.0	109.0	97.0	88.0	79.0	110.7	Да
030	Промежуточная клеть	1349.00	1242.50	0.00		103.0	103.0	104.0	105.0	105.0	103.0	98.0	98.0	87.0	107.5	Да
031	Рольганг для транспортировки	1348.50	1215.00	0.00		85.0	85.0	94.0	93.0	95.0	96.0	93.0	90.0	85.0	100.0	Да
032	Печь нагревательная	1367.50	1231.00	0.00		111.0	100.0	100.0	99.0	98.0	97.0	92.0	81.0	71.0	100.7	Да
033	Установка для приготовления огнеупорного покрытия	1277.50	1107.50	0.00		110.0	110.0	103.0	97.0	94.0	91.0	99.0	87.0	85.0	101.8	Да
034	Газоочистка ЭСПЦ	1169.20	1286.30	0.00		101.0	101.0	97.0	96.0	99.0	99.0	95.0	98.0	88.0	104.0	Да
035	Вибропитатель	1377.00	1260.00	0.00		116.0	116.0	107.0	103.0	103.0	97.0	94.0	90.0	86.0	103.9	Да
036	Вытяжная вентиляция	1399.50	1254.00	0.00		105.0	105.0	104.0	96.0	93.0	76.0	64.0	54.0	50.0	93.5	Да
037	Газовая резка	1407.00	1332.50	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
038	Газовая резка	1426.00	1328.50	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да

Инв. № подл	Подпись и дата	Взам. инв. №

Изм.	
Кол.уч Лист	
Лист	
№ док. Г	
Подпись	
Дата	

9051-	
MI	
000	
ယ်	

217	

039	Газовая резка	1450.00	1356.00	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
040	Газовая резка	1440.00	1317.00	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
041	Газовая резка	1430.50	1343.50	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
042	Вытяжная вентиляция	1456.50	1334.00	0.00		105.0	105.0	104.0	96.0	93.0	76.0	60.0	54.0	50.0	93.5	Да
043	Ленточнопильный станок	1405.00	1263.50	0.00		80.0	80.0	80.0	81.0	83.0	85.0	85.0	83.0	81.0	90.0	Да
044	Станок плоскошлифовальный	1468.00	1365.50	0.00		81.0	81.0	82.0	83.0	84.0	83.0	81.0	80.0	77.0	88.3	Да
045	Вертикально-фрезерный станок	1482.50	1381.00	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
046	Абразивный отрезной станок	1494.50	1385.00	0.00		80.0	80.0	80.0	81.0	83.0	85.0	85.0	83.0	81.0	90.0	Да
047	Шлифовальный станок	1506.00	1388.50	0.00		81.0	81.0	82.0	83.0	84.0	83.0	81.0	80.0	77.0	88.3	Да
048	Абразивный отрезной станок	1480.00	1360.00	0.00		80.0	80.0	80.0	81.0	83.0	85.0	85.0	83.0	81.0	90.0	Да
049	Вальцетокарный станок	1493.00	1367.00	0.00		85.0	85.0	85.0	85.0	94.0	97.0	98.0	97.0	92.0	103.4	Да
050	Станок для фрезеровки периодического профиля	1512.00	1427.50	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
051	Горизонтальный токарный станок	1527.50	1411.00	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
052	Универсальный фрезерный станок	1535.50	1429.00	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
053	Тангенциальный шлифовальный станок	1534.50	1417.50	0.00		71.0	71.0	81.0	88.0	91.0	90.0	83.0	82.0	78.0	93.0	Да
054	Ленточнопильный станок	1517.50	1460.00	0.00		80.0	80.0	80.0	81.0	83.0	85.0	85.0	83.0	81.0	90.0	Да
055	Станок вертикально-сверлильный	1521.00	1489.00	0.00		70.0	70.0	69.0	72.0	71.0	78.0	78.0	75.0	74.0	83.3	Да
056	Станок вертикально-сверлильный	1512.00	1404.50	0.00		70.0	70.0	69.0	72.0	71.0	78.0	78.0	75.0	74.0	83.3	Да
057	Точильно-шлифовальный станок, с аппаратом индивидуальной очистки	1462.50	1416.00	0.00		81.0	81.0	82.0	85.0	86.0	87.0	82.0	81.0	79.0	91.0	Да
058	Вальцешлифовальный станок	1506.00	1436.00	0.00		81.0	81.0	82.0	85.0	86.0	87.0	82.0	81.0	79.0	91.0	Да
059	Станок для фрезеровки периодического профиля	1462.00	1413.50	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
060	Сварочный аппарат	1497.50	1422.00	0.00		78.0	78.0	80.0	80.0	81.0	80.0	79.0	79.0	75.0	86.1	Да
061	Полуавтомат сварки в среде углекислого газа	1492.00	1433.50	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
062	Полуавтомат сварки в среде углекислого газа	1523.50	1416.00	0.00		65.0	65.0	63.0	68.0	70.0	73.0	78.0	80.0	81.0	85.0	Да
063	Установка сварочная	1538.50	1450.50	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
064	Полуавтомат сварки в среде углекислого газа	1529.50	1439.50	0.00		65.0	65.0	63.0	68.0	70.0	73.0	78.0	80.0	81.0	85.0	Да
065	Агрегат газорезки	1518.00	1465.50	0.00		56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
066	Станок заточной	968.50	830.50	0.00		78.0	78.0	86.0	84.0	86.0	85.0	79.0	80.0	86.0	90.4	Да
067	Плоскошлифовальный станок	976.10	846.30	0.00		81.0	81.0	82.0	85.0	86.0	87.0	82.0	81.0	79.0	91.0	Да
068	Точильно-шлифовальный станок	992.00	862.00	0.00		81.0	81.0	82.0	85.0	86.0	87.0	82.0	81.0	79.0	91.0	Да
069	Ленточнопильный станок	981.00	861.00	0.00		80.0	80.0	80.0	81.0	83.0	85.0	85.0	83.0	81.0	90.0	Да
070	Универсальный фрезерный станок	995.00	880.00	0.00		79.0	79.0	79.0	80.0	83.0	84.0	83.0	75.0	71.0	89.0	Да
071	Универсальный токарно-винторезный станок	998.50	870.00	0.00		71.0	71.0	75.0	80.0	86.0	89.0	86.0	79.0	68.0	92.1	Да
072	Дробилка	962.70	703.80	0.00		94.0	94.0	94.0	90.0	88.0	86.0	86.0	78.0	60.0	92.0	Да
073	Грохот	960.50	696.50	0.00		81.0	81.0	81.0	83.0	85.0	87.0	84.0	80.0	69.0	90.0	Да
074	Вибропитатель	984.50	697.50	0.00		93.0	93.0	93.0	93.0	87.0	84.0	84.0	83.0	79.0	91.7	Да
075	Транспортер	972.00	702.00	0.00		88.0	88.0	88.0	86.0	83.0	84.0	78.0	72.0	68.0	87.5	Да
080	Блок ливневых насос станций	1050.10	863.50	0.00		67.8	70.8	75.8	72.8	69.8	69.8	66.8	60.8	59.8	73.8	Да
081	Блок ливневых насос станций	1055.20	867.90	0.00		67.8	70.8	75.8	72.8	69.8	69.8	66.8	60.8	59.8	73.8	Да
082	Блок ливневых насос станций	1492.40	972.40	0.00		67.8	70.8	75.8	72.8	69.8	69.8	66.8	60.8	59.8	73.8	Да
083	Блок ливневых насос станций	1488.80	975.30	0.00		67.8	70.8	75.8	72.8	69.8	69.8	66.8	60.8	59.8	73.8	Да
084	Вентилятор	1701.50	1403.70	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
085	Вентилятор	988.10	878.90	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
086	Заправка техники	1038.00	1200.00	0.00		74.0	77.0	82.0	79.0	76.0	76.0	73.0	67.0	66.0	80.0	Да
087	ДВС дизельного насоса	1103.30	968.00	0.00	7.0	68.0	71.0	76.0	73.0	70.0	70.0	67.0	61.0	60.0	74.0	Да
088	ДВС дизельного насоса	1126.30	989.40	0.00	7.0	68.0	71.0	76.0	73.0	70.0	70.0	67.0	61.0	60.0	74.0	Да
089	ДВС дизельного насоса	1143.40	1012.20	0.00	7.0	63.0	66.0	71.0	68.0	65.0	65.0	62.0	56.0	55.0	69.0	Да
090	Вентиляторы станции водоподготовки	1122.30	995.30	0.00		71.4	74.4	79.4	76.4	73.4	73.4	70.4	64.4	63.4	77.4	Да
091	Вентиляторы градирни	1056.70	959.90	0.00		99.0	99.0	98.0	96.0	93.0	89.0	85.0	83.0	77.0	95.0	Да
		1000 00	0.10.00	0.00			67.0	62.0	(0.0	67.0	110	(10	E4.0	40.0	CO. 77	II.
092	Вентилятор	1079.70	943.00	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да

Инв. № подл	Подпись и дата	Взам. инв. №

Лист

Кол.уч																			
۲		,	Exact.																
_			094	Двигатель	1171.50	979.00	0.00		51.0	51.0	68.0	73.0	66.0	74.5	68.0	71.0	71.0	78.3	Да
Лист			095	ЭД сварка	1113.10	1037.90	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
의			096	Зарядная	1222.50	914.60	0.00		77.0	77.0	79.0	75.0	74.0	70.0	60.0	50.0	70.0	75.8	Да
1	+	1	097	Зарядная	1248.10	883.20	0.00		77.0	77.0	79.0	75.0	74.0	70.0	60.0	50.0	70.0	75.8	Да
No			098	ЭД сварка	1226.90	926.20	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
Док.			099	T1 220/10 кВ TNARE (ТДН) мощностью 50	1208.00	927.50	0.00		93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0	Да
<i>.</i> >.			100	T1 220/10 кВ TNARE (ТДН) мощностью 50	1198.50	918.50	0.00		93.0	96.0	101.0	98.0	95.0	95.0	92.0	86.0	85.0	99.0	Да
			101	ТЗ 220/35 кВ TNARE (ТДН) мощностью 110 MBA TTO 2500/10 мошность 2500 кВА	1192.50	912.50 900.00	0.00		53.0	56.0 83.5	61.0	58.0	55.0 82.5	55.0 82.5	52.0 79.5	46.0	45.0	59.0	Да
ᅙ			102	TSPH-12131/900 мощность 3000 кВА	1214.00 1221.50	877.50	0.00		80.5 81.0	84.0	88.5 89.0	85.5 86.0	83.0	83.0	80.0	73.5	72.5 73.0	86.5 87.0	Да
Подпись			103	ТСЛ-3000/10 мощностью 3000 кВА	1221.50	890.50	0.00		73.0	76.0	81.0	78.0	75.0	75.0	72.0	66.0	65.0	79.0	Да
6			104	TCЛ-3000/10 мощностью 3000 кВА TCЛ-3000/10 мощностью 3000 кВА	1234.50	902.50	0.00		73.0	76.0	81.0	78.0	75.0	75.0	72.0	66.0	65.0	79.0	Да
ъ		1	105	TCJI-2500/10 мощностью 3000 кВА TCJI-2500/10 мощностью 3000 кВА	1178.50	902.50	0.00		73.0	76.0	81.0	78.0	75.0	75.0	72.0	66.0	65.0	79.0	Да
		1	100		1178.30					77.4	82.4	79.4	76.4	76.4	73.4				Да
			107	ТМГ 630/10 мощностью 630 кВА S9-2500/10 мощностью 2500 кВА	1218.00	901.10 924.00	0.00		74.4	75.0	80.0	77.0	74.0	74.0	71.0	67.4 65.0	66.4	80.4 78.0	Да
Дата			108	TC3 630/10 мощностью 2300 кВА ТС3 630/10 мощностью 630 кВА	1215.00	910.00	0.00			67.0	72.0	69.0	66.0	66.0	63.0	57.0	56.0	70.0	Да
a			110	TC3 630/10 мощностью 630 кВА ТС3 630/10 мощностью 630 кВА	1213.00	868.00	0.00		64.0	67.0	72.0	69.0	66.0	66.0	63.0	57.0	56.0	70.0	Да
			111	Горелка	2206.20	2797.20	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да Да
_		1	111	Горелка	2206.20	2797.20	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			113	Вентиляторы	2225.90	2777.00	0.00		66.7	69.7	74.7	71.7	68.7	68.7	65.7	59.7	58.7	72.7	Да
			114	Вентиляторы	2225.90	2777.00	0.00		66.7	69.7	74.7	71.7	68.7	68.7	65.7	59.7	58.7	72.7	Да
			115	Горелка	1466.70	1076.10	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			116	Вентиляторы	1520.80	1132.10	0.00		65.0	65.0	69.0	76.0	75.0	73.0	70.0	62.0	50.0	77.5	Да
			117	Вентиляторы	1451.40	1060.70	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
			118	Вентиляторы	1440.50	1054.00	0.00		73.2	76.2	81.2	78.2	75.2	75.2	72.2	66.2	65.2	79.2	Да
			119	Горелка	1733.00	1488.50	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			120	Горелка	1730.10	1490.70	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			122	Вентилятор	1738.00	1467.00	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
			123	Вентилятор	1763.50	1503.50	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
			124	Вентилятор	1342.80	1005.70	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	905		125	Вентиляторы	983.00	843.40	0.00		72.7	75.7	80.7	77.7	74.7	74.7	71.7	65.7	64.7	78.7	Да
	•		126	Вентилятор	971.50	827.50	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	S		127	Вентилятор	955.50	820.50	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	—		128	Горелка	1033.30	823.00	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
	.1		129	Горелка	1014.50	803.00	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			130	Вентилятор	1112.00	930.00	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	ПМООС		131	Hacoc	1099.00	922.00	0.00		75.0	75.0	82.0	83.0	84.0	90.0	81.0	84.0	65.0	92.1	Да
	\succeq		132	Hacoc	1106.00	982.50	0.00		75.0	75.0	82.0	83.0	84.0	90.0	81.0	84.0	65.0	92.1	Да
			133	ЭД сварка	1075.00	901.80	0.00		99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	86.6	Да
	$\tilde{}$		134	Компрессор	1022.00	807.00	0.00		88.0	88.0	81.0	82.0	86.0	82.0	80.0	84.0	78.0	89.4	Да
	\simeq		135	Компрессор	961.00	837.00	0.00		88.0	88.0	81.0	82.0	86.0	82.0	80.0	84.0	78.0	89.4	Да
	()		136	Вентилятор	965.00	818.00	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	C		137	Вентилятор	1007.00	793.00	0.00		57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
	-		138	Зарядная	1112.20	813.70	0.00		77.0	77.0	79.0	75.0	74.0	70.0	60.0	50.0	70.0	75.8	Да
			139	Шиномонтаж	1105.00	812.00	0.00		63.0	63.0	72.0	71.0	70.0	68.0	64.0	56.0	53.0	72.4	Да
			140	Мойка транспорта	1063.40	756.00	0.00		71.0	74.0	79.0	76.0	73.0	73.0	70.0	64.0	63.0	77.0	Да
			141	ДВС БЭС	1111.80	820.40	0.00	7.0	62.0	65.0	70.0	67.0	64.0	64.0	61.0	55.0	54.0	68.0	Да
			142	Горелка	1048.50	817.00	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			143	Горелка	1052.00	821.50	0.00		70.0	70.0	74.0	73.0	67.0	66.0	65.0	65.0	60.0	72.7	Да
			144	TCЛ-3000/10 мощностью 3000 кBA	1219.50	1326.50	0.00		79.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0	79.0	86.0	Да
			146	Бетоносмеситель	633.00	535.50	0.00		90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	97.0	Да

Инв. № подл	Подпись и дата	Взам. инв. №

(ол.уч																
-	147	Скиповый подьемник	633.00	540.50	0.00	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	77.0	Да
Лист	148	Транспортер	629.50	522.00	0.00	88.0	88.0	88.0	86.0	83.0	83.0	78.0	72.0	68.0	86.8	Да
의	149	Транспортер	616.50	530.50	0.00	88.0	88.0	88.0	86.0	83.0	83.0	78.0	72.0	68.0	86.8	Да
	150	Вентилятор	2077.00	2166.00	0.00	57.0	57.0	63.0	68.0	67.0	66.0	61.0	54.0	42.0	69.7	Да
No nok	151	Перегрузка инертных материалов	601.50	526.30	0.00	88.0	88.0	88.0	88.0	88.0	87.0	86.0	82.0	73.0	92.2	Да
₹	152	Перегрузка инертных материалов	607.00	520.00	0.00	88.0	88.0	88.0	88.0	88.0	87.0	86.0	82.0	73.0	92.2	Да
≼	153	Компрессор	613.50	539.50	0.00	88.0	88.0	81.0	82.0	86.0	82.0	80.0	84.0	78.0	89.4	Да
	154	Сплит системы	1482.00	1115.00	5.00	37.0	40.0	45.0	42.0	39.0	39.0	36.0	30.0	29.0	43.0	Да
5 	155	Сплит системы	1760.50	1492.00	4.00	46.0	49.0	54.0	51.0	48.0	48.0	45.0	39.0	38.0	52.0	Да
31 I I	156	Горелка	2074.30	2175.80	0.00	66.7	69.7	74.7	71.7	68.7	68.7	65.7	59.7	58.7	72.7	Да
	157	Горелка	2075.00	2175.00	0.00	66.7	69.7	74.7	71.7	68.7	68.7	65.7	59.7	58.7	72.7	Да
[†]	158	Вентиляторы	2093.50	2163.50	0.00	71.5	74.5	79.5	76.5	73.5	73.5	70.5	64.5	63.5	77.5	Да
T	159	ЭД сварка	2118.00	2235.00	0.00	78.0	78.0	80.0	80.0	81.0	80.0	79.0	79.0	75.0	86.1	Да
¬I I I	160	Заточной станок	2117.50	2207.50	0.00	78.0	78.0	86.0	84.0	86.0	85.0	79.0	80.0	86.0	90.4	Да
Лата	161	Компрессор	2115.00	2185.50	0.00	104.0	104.0	98.0	96.0	95.0	94.0	89.0	86.0	83.0	98.1	Да
มี	164	Блок разделения воздуха	2090.50	2162.50	0.00	97.0	97.0	98.0	102.0	102.0	100.0	96.0	91.0	87.0	104.3	Да
	165	Hacoc	2085.50	2186.00	0.00	100.0	100.0	98.0	100.0	101.0	99.0	93.0	92.0	85.0	103.1	Да
	195	Проектируемая КНС №1	1458.50	994.50	0.00	81.0	81.0	70.0	73.0	66.0	57.0	52.0	51.0	43.0	68.0	Да
	196	Проектируемая КНС №2	1674.50	994.50	0.00	81.0	81.0	70.0	73.0	66.0	57.0	52.0	51.0	43.0	68.0	Да
	197	Проектируемая КНС №3	1855.50	983.00	0.00	81.0	81.0	70.0	73.0	66.0	57.0	52.0	51.0	43.0	68.0	Да
	198	Проектируемая КНС №4	1232.00	722.00	0.00	81.0	81.0	70.0	73.0	66.0	57.0	52.0	51.0	43.0	68.0	Да
	199	Проектируемая ливневая насосная станция №1	1855.00	1134.50	0.00	93.0	93.0	83.0	85.0	79.0	79.0	71.0	59.0	50.0	83.0	Да
	200	Проектируемая ливневая насосная станция №2	2001.50	1511.00	0.00	93.0	93.0	83.0	85.0	79.0	79.0	71.0	59.0	50.0	83.0	Да
	201	Проектируемая ДСП, период плавления	1886.00	1408.00	0.00	127.0	127.0	125.0	123.0	129.0	123.0	120.0	114.0	103.0	128.9	Да
	202	Проектируемая Газоочистка ЭСПЦ	1811.70	1233.30	0.00	101.0	101.0	97.0	96.0	99.0	99.0	95.0	98.0	88.0	104.0	Да
	203	Проектируемая аспирационная установка	1833.50	1261.00	0.00	122.0	122.0	117.0	120.0	118.0	113.0	108.0	102.0	96.0	119.0	Да
	204	Проектируемая дымовая труба прокатного цеха	1710.50	1103.50	0.00	112.0	112.0	110.0	114.0	107.0	105.0	99.0	98.0	87.0	110.0	Да
	205	Проектируемая дизель генераторная №2	1722.50	946.00	0.00	91.6	91.6	89.4	94.2	106.1	105.7	103.4	98.4	91.3	110.0	Да
	206	Проектируемая компрессорная станция	1862.50	1360.50	0.00	109.0	109.0	109.0	117.0	108.0	107.0	103.0	98.0	90.0	113.0	Да
905	207	Проектируемые котельные	2133.10	1995.60	0.00	99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	87.0	Да
	208	Проектируемые котельные	1789.10	1385.00	0.00	99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	87.0	Да
<u> </u>	209	Проектируемые котельные	1780.10	1376.60	0.00	99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	87.0	Да
_ T	210	Проектируемые котельные	1781.10	1375.60	0.00	99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	87.0	Да
	211	Проектируемые котельные	1781.10	1374.60	0.00	99.0	99.0	92.0	86.0	83.0	80.0	78.0	76.0	74.0	87.0	Да
	212	Проектируемая трансформаторная подстанция	2189.50	2312.00	0.00	96.0	99.0	104.0	101.0	98.0	98.0	95.0	89.0	88.0	102.0	Да
91	213	Проектируемая трансформаторная подстанция	2230.50	2364.50	0.00	96.0	99.0	104.0	101.0	98.0	98.0	95.0	89.0	88.0	102.0	Да
	215	Пресс-ножницы	1917.50	1556.50	0.00	75.0	75.0	85.0	93.0	98.0	87.0	91.0	79.0	77.0	97.5	Да
\circ \circ	216	Узел перегрузки лома черных металлов	2067.40	1722.40	0.00	95.0	95.0	102.0	101.0	99.0	89.0	81.0	77.0	69.0	98.4	Да
\tilde{a}	217	Газовая резка	1900.00	1211.50	0.00	56.0	56.0	57.0	73.0	72.0	72.5	72.5	83.0	91.0	91.0	Да
ПМООС :	217	1 азовая резка	1		3,30	янного шума	20.0	37.0	13.0	12.0	12.3	12.3	03.0	71.0	91.0	

1.2. Источники непостоянного шума

90	1.2. VICTO-INIKU HEIIOCTO/IHIOTO Wyma																		
N	Объект	Координаты точек (X, Y, Высота подъема)	Ширина (м)	Высота (м)		Уровни звукового давления (мощности, в случае R = 0), дБ, в октавных полосах со среднегеометрическими частотами в Гц									t	Т	La.экв		В расчете
					Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000					
001	Ж/д транспорт	(2265.7, 2700.6, 0), (648, 776.5, 0)	5.00		7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
002	Авто транспорт	(1521.2, 1574.3, 0), (1857.6, 1281.2, 0)	5.00		7.5	43.2	49.8	45.2	42.2	39.2	39.2	36.2	30.2	17.8	10.0	24.0	43.2	57.6	Да

Инв. № подл	Подпись и дата	Взам. инв. №

Изм.	
Кол.уч Лист	
№ док.	
№ док. Подпись	
Дат	

9
3
51-
L
\leq
\overline{Q}
\odot
()
w

Лист

003	Погрузчики	(1305.1, 1451, 0), (1658.3, 1880.2, 0)	40.00	7.5	36.0	42.5	38.0	35.0	32.0	32.0	29.0	23.0	10.5	10.0	24.0	36.0	57.6	Да
076	Легковой транспорт	(1509.4, 986.5, 0), (1594.8, 1093, 0)	75.00	7.5	22.9	29.4	24.9	21.9	18.9	18.9	15.9	9.9	0.0	10.0	24.0	22.9	51.6	Да
077	Проезд транспорта	(1557.5, 1385.6, 0), (1032, 750.6, 0)	5.00	7.5	39.4	45.9	41.4	38.4	35.4	35.4	32.4	26.4	13.9	10.0	24.0	39.4	57.6	Да
078	Техника	(935, 772.9, 0), (1169.3, 1057.6, 0)	520.00	7.5	41.8	48.2	43.8	40.8	37.8	37.8	34.8	28.8	16.2	10.0	24.0	41.8	57.6	Да
079	Грузовой транспорт	(965.6, 753.2, 0), (1189, 1031.3, 0)	390.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
121	Грузовой автотранспорт	(1769.9, 1404.7, 0), (1852.4, 1539.7, 0)	45.00	7.5	45.5	52.0	47.5	44.5	41.5	41.5	38.5	32.5	20.0	10.0	24.0	45.5	57.6	Да
145	Работа техники	(580.6, 499, 0), (637.3, 504.2, 0)	14.00	7.5	43.4	49.9	45.4	42.4	39.4	39.4	36.4	30.4	17.9	10.0	24.0	43.4	57.6	Да
162	Автотранспорт	(2097, 2151.5, 0), (2072.7, 2139, 0)	14.00	7.5	22.9	29.4	24.9	21.9	18.9	18.9	15.9	9.9	0.0	10.0	24.0	22.9	51.6	Да
163	Автотранспорт	(2140.1, 2182.8, 0), (2166.7, 2223.6, 0)	14.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
166	Проектируемые внутренние проезды	(2345.1, 2160.6, 0), (1842.1, 898.6, 0)	10.00	7.5	43.4	49.9	45.4	42.4	39.4	39.4	36.4	30.4	17.9	10.0	24.0	43.4	57.6	Да
167	Проектируемые внутренние проезды	(1820.1, 851.6, 0), (1508.1, 971.6, 0)	10.00	7.5	41.8	48.2	43.8	40.8	37.8	37.8	34.8	28.8	16.2	10.0	24.0	41.8	57.6	Да
168	Проектируемые внутренние проезды	(1350.1, 814.6, 0), (1756.1, 1260.6, 0)	10.00	7.5	41.8	48.2	43.8	40.8	37.8	37.8	34.8	28.8	16.2	10.0	24.0	41.8	57.6	Да
169	Проектируемые внутренние проезды	(1765.1, 1257.6, 0), (2042.1, 1923.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
170	Проектируемые внутренние проезды	(1914.1, 1807.6, 0), (1786.1, 1515.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
171	Проектируемые внутренние проезды	(1851.1, 1491.6, 0), (1524.1, 1099.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
172	Проектируемые внутренние проезды	(1899.1, 1838.6, 0), (2069.1, 2238.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
173	Проектируемые внутренние проезды	(2134.7, 2102.3, 0), (2347.1, 2211, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
174	Проектируемые внутренние проезды	(2165.1, 2230.6, 0), (2045.1, 1940.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
175	Проектируемые внутренние проезды	(2255.1, 2247.6, 0), (2136.1, 1952.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
176	Проектируемые внутренние проезды	(1774.1, 1503.6, 0), (1467.1, 1138.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
177	Проектируемые внутренние проезды	(1916.1, 1805.6, 0), (2139.1, 1932.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
178	Проектируемые внутренние проезды	(1643.1, 1003.6, 0), (1466.1, 1147.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
179	Проектируемые внутренние проезды	(1758.1, 1271.6, 0), (1603.1, 1389.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
180	Проектируемые внутренние проезды	(1844.1, 1486.6, 0), (1695.1, 1523.6, 0)	10.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
181	Проектируемая открытая стоянка на 740 м/м	(1940.1, 1833.6, 0), (2087.1, 2183.6, 0)	60.00	7.5	40.7	47.2	42.7	39.7	36.7	36.7	33.7	27.7	15.2	10.0	24.0	40.7	51.6	Да
182	Проектируемая открытая стоянка грузовой техники на 11 м/м	(2160.1, 2200.6, 0), (2236.1, 2214.6, 0)	18.00	7.5	42.2	48.6	44.2	41.2	38.2	38.2	35.2	29.2	16.6	10.0	24.0	42.2	57.6	Да

Инв. № подл	Подпись и дата	Взам. инв. №

Изм. Кол.уч Лист №док. Подпись Дата			
№док. Подпись	Изм.		
№док. Подпись	Кол.уч		
HH	Лист		
HH	№ док.		
Дата	Подпись		
	Дата		

9051- IIMOOC 3

Лист 221

183	Проектируемая открытая стоянка грузовой техники на 10 м/м	(1295.1, 739.6, 0), (1394.1, 752.6, 0)	18.00	7.5	41.8	48.2	43.8	40.8	37.8	37.8	34.8	28.8	16.2	10.0	24.0	41.8	57.6	Да
184	Проектируемая открытая стоянка грузовой техники на 7 м/м	(2064.1, 2206.6, 0), (2118.1, 2184.6, 0)	18.00	7.5	40.3	46.8	42.3	39.3	36.3	36.3	33.3	27.3	14.8	10.0	24.0	40.3	57.6	Да
85	Проектируемая открытая стоянка легковых автомобилей на 152 м/м	(2297.2, 2164.7, 0), (2316.2, 2034.7, 0)	60.00	7.5	46.8	53.3	48.8	45.8	42.8	42.8	39.8	33.8	21.3	10.0	24.0	46.8	83.8	Да
186	Проектируемая открытая стоянка легковых автомобилей на 112 м/м	(1242.4, 689.7, 0), (1349.4, 701.7, 0)	44.00	7.5	32.9	39.4	34.9	31.9	28.9	28.9	25.9	19.9	7.4	10.0	24.0	32.9	51.6	Да
187	Проектируемая открытая стоянка грузовой техники на 10 м/м	(1249.5, 649.2, 0), (1319.5, 660.2, 0)	18.00	7.5	41.8	48.2	43.8	40.8	37.8	37.8	34.8	28.8	16.2	10.0	24.0	41.8	57.6	Да
188	Ж/д путь	(2349.1, 2229.6, 0), (1896.1, 1152.6, 0)	2.00	7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
189	Ж/д путь	(2323.1, 2294.6, 0), (1599.1, 1104.6, 0)	2.00	7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
190	Ж/д путь	(2266.7, 2673.3, 0), (2363.1, 2011.6, 0)	2.00	7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
191	Ж/д путь	(2355.1, 1978.6, 0), (1841.1, 831.6, 0)	2.00	7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
192	Ж/д путь	(1838.1, 835.6, 0), (1422.1, 873.6, 0)	2.00	7.5	61.0	48.4	45.5	42.6	55.4	57.3	54.6	49.5	37.6	10.0	24.0	61.0	83.0	Да
193	Проектируемый открытый склад готовой продукции	(2154.1, 1606.6, 0), (2276.1, 1880.6, 0)	80.00	7.5	36.0	42.5	38.0	35.0	32.0	32.0	29.0	23.0	10.5	10.0	24.0	36.0	57.6	Да
194	Проектируемый открытый склад готовой продукции	(1525.1, 856.6, 0), (1562.1, 852.6, 0)	40.00	7.5	38.9	45.4	40.9	37.9	34.9	34.9	31.9	25.9	13.4	10.0	24.0	38.9	57.6	Да
214	Проектируемый склад материалов и оборудования	(1991, 1448, 0), (2102, 1705, 0)	14.00	7.5	36.0	42.5	38.0	35.0	32.0	32.0	29.0	23.0	10.5	10.0	24.0	36.0	57.6	Да

2. Условия расчета 2.1. Расчетные точки

		101111010				
N	Объект	Коо	рдинаты т	очки	Тип точки	В расчете
		Х (м)	Y (M)	Высота подъема (м)		
001	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	-20.40	-598.40	1.50	Расчетная точка на границе жилой зоны	Да
002	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	309.50	-516.70	1.50	Расчетная точка на границе жилой зоны	Да
003	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	732.80	-659.70	1.50	Расчетная точка на границе жилой зоны	Да
004	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	1013.10	-607.20	1.50	Расчетная точка на границе жилой зоны	Да
005	На границе жилой зоны	2975.60	132.00	1.50	Расчетная точка на границе жилой зоны	Да
006	На границе жилой зоны	2973.30	-19.90	1.50	Расчетная точка на границе жилой зоны	Да
007	На границе жилой зоны	3206.80	293.10	1.50	Расчетная точка на границе жилой зоны	Да
008	На границе рекреационной территории (садовые товарищества, зона природного ландшафта	3360.40	2575.10	1.50	Расчетная точка на границе жилой зоны	Да

Инв. № подл	Подпись и дата	Взам. инв. №

1зм.	
Кол.уч Лист	
№ док.	
Подпись	
Дата	

9051- IIMOOC 3

	территорий (Р-2))					
009	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	1804.30	4004.60	1.50	Расчетная точка на границе жилой зоны	Да
010	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	922.60	268.60	1.50	Расчетная точка на границе жилой зоны	Да
011	На границе рекреационной территории (садовые товарищества, зона природного ландшафта территорий (P-2))	1886.00	397.00	1.50	Расчетная точка на границе жилой зоны	Да
012	На границе СЗЗ	293.23	2139.44	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
013	На границе СЗЗ	854.22	3383.16	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
014	На границе СЗЗ	2140.25	4001.06	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
015	На границе СЗЗ	3213.55	3205.12	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
016	На границе СЗЗ	3369.34	1757.40	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
017	На границе СЗЗ	2838.92	401.96	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
018	На границе СЗЗ	1927.33	-577.33	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
019	На границе СЗЗ	483.81	-809.90	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
020	На границе СЗЗ	-781.22	-376.61	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
021	На границе СЗЗ	-636.59	1007.37	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
022	Р.Т. на границе промзоны (авто) из Полигон	1255.40	2411.90	1.50	Расчетная точка на границе производственной зоны	Да
023	Р.Т. на границе промзоны (авто) из Полигон	2054.20	2792.36	1.50	Расчетная точка на границе производственной зоны	Да
024	Р.Т. на границе промзоны (авто) из Полигон	2365.71	2199.67	1.50	Расчетная точка на границе производственной зоны	Да
025	Р.Т. на границе промзоны (авто) из Полигон	2038.73	1180.68	1.50	Расчетная точка на границе производственной зоны	Да
026	Р.Т. на границе промзоны (авто) из Полигон	1548.15	380.09	1.50	Расчетная точка на границе производственной зоны	Да
027	Р.Т. на границе промзоны (авто) из Полигон	461.06	225.45	1.50	Расчетная точка на границе производственной зоны	Да
028	Р.Т. на границе промзоны (авто) из Полигон	415.58	712.44	1.50	Расчетная точка на границе производственной зоны	Да
029	Р.Т. на границе промзоны (авто) из Полигон	1112.12	1561.32	1.50	Расчетная точка на границе производственной зоны	Да

2.2. Расчетные площадки

-		2.2.1.40.011.2.0		7							
Ĭ	N	Объект	Координа	гы точки 1	Координа	гы точки 2	Ширина	Высота	Шаг се	тки (м)	В
-1							(M)	подъема			расчете
-1								(M)			4 1
ı			X (M)	Y (M)	X (M)	Y (M)			X	Y	
[001	Расчетная площадка	-1580.90	1404.35	4703.40	1404.35	6700.30	1.50	483.73	447.86	Да

Вариант расчета: "Эколог-Шум. Вариант расчета по умолчанию" 3. Результаты расчета (расчетный параметр "Звуковое давление") 3.1. Результаты в расчетных точках Точки типа: Расчетная точка на границе производственной зоны

	Расчетная точка	Координа	ты точки		31.5	63	125	250	500	1000	2000	4000	8000	Lа.экв	La.макс
	<u> </u>			(M)											
N	Название	X (M)	Y (M)												
022	Р.Т. на границе промзоны (авто) из Полигон	1255.40	2411.90	1.50	49.1	48.3	48.1	50.5	44.5	40.8	30.7	0	0	46.50	64.40
023	Р.Т. на границе промзоны (авто) из Полигон	2054.20	2792.36	1.50	50.5	49.2	50.5	50.7	50.1	48.3	41.2	26.1	0	51.90	73.60
024	Р.Т. на границе промзоны (авто) из Полигон	2365.71	2199.67	1.50	53.6	50.8	51.3	50.5	47.7	47.2	42.5	34.9	19.9	51.00	75.40

	Į	Инв. № п	юдл	Подпись и	і дата	Вз	ам. ин	3. №					
Изм.													
Кол.уч									_				
Лист		C		(Р-2)) На границе рекреа- ционной территории садовые товарищества,	1013.10	-607.20	1.50	45.7	45.1	43.2	45.9	38.9	34.
№ док.			л	зона природного пандшафта территорий (P-2))									
_	M					132.00	1.50	46.9	46.3	44.8	48.1	41.2	37
힌				На границе жилой зоны		-19.90	1.50	46.4	45.8	44.2	47.5	40.4	36.
Подпись			800	На границе рекреа- ционной территории	3206.80 3360.40	293.10 2575.10	1.50	46.5 46.2	45.9 45.5	44.5 44.6	47.7 46.4	40.6 39.6	36. 35.
Дата			,	садовые товарищества, зона природного пандшафта территорий (P-2))									
ש	Ц	C		На границе рекреа- ционной территории садовые товарищества,	1804.30	4004.60	1.50	44	43.2	42.8	43.4	37.5	32.

922.60 268.60 1.50

1886.00 397.00

50.1

52.4

1.50

49.6

52

48.2

50.2

зона природного ландшафта территорий (P-2))

зона природного ландшафта территорий (P-2))

пионной территории (садовые товарищества, зона природного ландшафта территорий (P-2))

010 На границе рекреационной территории (садовые товарищества,

011 На границе рекреа-

Torrer mirror	Распетиле топки площалок	

50.6

54.3

44.6

47.4

41.3

44.7

19.8

23.6

22.1

22.2

15.6

32.2

36.3

0

0

0

0

0

15.5

17

0

0

0

0

0

0

0

41.00

43.30

42.60

42.70

41.70

39.00

46.80

50.10

52.50

57.30

56.40

57.20

59.30

58.90

59.60

63.00

Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
		(M)											
X (M)	Y (M)				0	/							
-1580.90	4754.50	1.50	38.8	38	36.2	36	28	16.2	0	0	0	30.00	40.60
-1097.17	4754.50	1.50	39.4	38.6	37	37	29.2	19	0	0	0	31.10	42.60
-613.45	4754.50	1.50	40.1	39.2	37.7	37.9	30.2	21.1	0	0	0	32.20	44.80
-129.72	4754.50	1.50	40.6	39.7	38.4	38.7	31.5	23.4	0	0	0	33.20	47.10
354.01	4754.50	1.50	41.1	40.3	39	39.4	34.8	26.8	0	0	0	35.20	49.30
837.74	4754.50	1.50	41.4	40.6	39.5	39.9	33.3	26.2	0	0	0	34.80	51.90
1321.46	4754.50	1.50	41.7	40.8	39.8	40.3	33.1	26.3	0	0	0	35.00	53.00
1805.19	4754.50	1.50	41.7	40.9	40	40.4	33.6	26.5	0	0	0	35.20	52.30
2288.92	4754.50	1.50	41	40.1	39.5	38.3	34	26.9	0	0	0	34.60	51.10
2772.65	4754.50	1.50	41.4	40.6	39.8	40	32.3	25.2	0	0	0	34.50	50.00
3256.37	4754.50	1.50	39.3	38.2	38	36.2	30	22.6	0	0	0	31.50	48.80
3740.10	4754.50	1.50	38.9	37.7	37.3	35.3	28.9	21	0	0	0	30.50	47.40
4223.83	4754.50	1.50	38.4	37	36.2	34.3	29.5	20	0	0	0	30.10	46.90

9051-IIMOOC

		Инв. № подл	Подпись	и дата	Взам. инв. №									
Изм.														
Кол.уч														
		-1580.90 -1097.17	4306.64 1.50	39.5	38.6 39.2	36.9 37.7	36.9 37.9	28.7 30.4	17.6	0	0	0	30.90	42.80
Лист		-613.45	4306.64 1.50 4306.64 1.50	40 40.8	40	38.6	39	31.8	19.7 23	0	0	0	32.10 33.50	44.30 46.10
z	\dashv	-129.72	4306.64 1.50	41.4	40.7	39.4	39.9	32.9	25.4	0	0	0	34.60	48.30
№ док.		354.01 837.74	4306.64 1.50 4306.64 1.50	42.1 42.6	41.3 41.8	40.2	40.8 41.5	34.3 37.6	27.5 30.9	4.7	0	0	35.80 38.00	51.10 54.00
ĕ		1321.46	4306.64 1.50	42.9	42.1	41.3	42	35.2	29.4	6.9	0	0	37.00	56.10
I⊒		1805.19	4306.64 1.50	43	42.2	41.5	42.1	35.8	29.6	9.9	0	0	37.30	56.00
핔		2288.92 2772.65	4306.64 1.50 4306.64 1.50	42.3 42.6	41.4	41.1	40 41.6	36.1 34.3	29.9 28.2	9.3 8.2	0	0	36.70 36.40	54.40 53.10
Подпись		3256.37	4306.64 1.50	40.5	39.3	39.2	37.6	31.6	25.5	4.5	0	0	33.20	51.70
H	-	3740.10	4306.64 1.50	39.9	38.6	38.4	36.6	32.2	24.4	0	0	0	32.80	51.10
		4223.83 -1580.90	4306.64 1.50 3858.77 1.50	39.4 40	38.3 39.1	37.4 37.6	38	30.2 29.3	22.7 19	0	0	0	32.30 31.70	47.90 43.30
Дата		-1097.17	3858.77 1.50	40.8	40	38.5	38.9	30.8	21.9	0	0	0	33.00	46.30
a		-613.45	3858.77 1.50	41.3	40.6	39.4	40.1	32.7	24.2	0	0	0	34.50	48.00
\vdash		-129.72	3858.77 1.50	42	41.2	40.2	41.2	34.5	26.4	0	0	0	35.90	50.40
		354.01 837.74	3858.77 1.50 3858.77 1.50	42.8 43.7	42 42.9	41.1	42.3 43.2	36.1 37.5	29.6 31.9	5.6 12.7	0	0	37.40 38.80	52.60 55.60
		1321.46	3858.77 1.50	44.3	43.5	42.8	43.7	40.1	35	18	0	0	40.80	59.20
		1805.19	3858.77 1.50	44.5	43.7	43.3	44.1	38.1	33.2	18.3	0	0	39.70	60.00
		2288.92	3858.77 1.50	43.7	42.8	42.7	41.9	38.4	33.1	17.3	0	0	39.10	57.30
		2772.65 3256.37	3858.77 1.50 3858.77 1.50	42.7 41.8	41.6 40.6	41.7	40.2 39.2	35.3 34.5	30.4 28.9	15.9 11.3	0	0	36.60 35.60	56.50 55.40
		3740.10	3858.77 1.50	41.5	40.4	39.8	40.5	33.3	27.2	5.5	0	0	35.30	53.00
		4223.83	3858.77 1.50	41.3	40.4	39.1	39.9	32.1	25.8	0	0	0	34.40	51.40
		-1580.90 -1097.17	3410.91 1.50 3410.91 1.50	40.6 41.2	39.7 40.5	38.2 39.2	38.5 39.9	30.4 32.1	21.1	0	0	0	32.60 34.10	45.40 47.60
	\ <u>`</u>	-613.45	3410.91 1.50	42	41.2	40.1	41.2	33.6	26.1	0	0	0	35.60	49.90
	9051	-129.72	3410.91 1.50	43	42.2	41.3	42.6	35.4	28.5	1.2	0	0	37.20	52.40
	<u> 2</u>	354.01	3410.91 1.50	44	43.2	42.5	43.9	37.4	30.9	11	0	0	38.90	55.30
	Т	837.74 1321.46	3410.91 1.50 3410.91 1.50	44.9 45.7	44.1 44.8	43.4 44.2	44.9 45.7	39.7 42.2	34.3 37.9	18.2 23.7	0	0	40.90 43.10	57.60 61.10
		1805.19	3410.91 1.50	46.4	45.6	45.4	46.3	41.6	38.4	26.9	0	0	43.30	64.50
	ПМООС	2288.92	3410.91 1.50	45.3	44.5	45	45.5	41.3	37.1	25.1	0	0	42.50	61.30
		2772.65 3256.37	3410.91 1.50 3410.91 1.50	44.3	43 42.4	43.4 42.4	42.1 43.3	37.7 37	34.1 32.4	22.7 18.4	0	0	39.30	60.30 57.90
	\simeq	3740.10	3410.91 1.50 3410.91 1.50	43.2	42.4	41.5	42.5	35.2	29.9	11.3	0	0	38.80 37.40	54.30
	\simeq	4223.83	3410.91 1.50	42.2	41.3	40.2	41.1	35	28.6	3.8	0	0	36.40	51.70
		-1580.90	2963.05 1.50	41.1	40.3	38.5	39.1	30.6	21.5	0	0	0	33.10	46.40
	ယ	-1097.17 -613.45	2963.05 1.50 2963.05 1.50	41.7 42.9	40.9	39.7 41.1	40.7 42.3	33.2 35.2	25.3 28	0.1	0	0	35.10 36.90	49.10 51.90
			2963.05 1.50	44	43.3	42.5	43.9	37	30.6	9.4	0	0	38.70	54.60
		354.01	2963.05 1.50	45.3	44.5	43.9	45.5	39	33.1	16	0	0	40.60	57.00
		837.74	2963.05 1.50	46.5	45.7	44.9	46.8	40.5	35.8	22	0	0	42.30	60.50
		1321.46 1805.19	2963.05 1.50 2963.05 1.50	47.7 48.7	46.8 47.9	46.4 48.1	48.1 49	42.5 47	38.4 44.1	26.9 34.5	9.8	0	44.20 48.20	63.60 67.20
		2288.92	2963.05 1.50	49	48	48.7	49	45.2	42.5	34.5	18.9	0	47.10	67.60
		2772.65	2963.05 1.50	46.7	45.4	45.5	46.6	40.9	38.1	28.8	0	0	43.10	64.20
		3256.37		45.6 44.2	44.7 43.4	43.9 42.6	45.5 43.9	38.8 36.7	34.7 31.8	22 15.7	0	0	40.90 38.80	59.70 55.80
		3/40.10	2963.05 1.50	44.2	43.4	42.0	43.5	30.7	31.0	15.7	. 0	ı U	36.60	33.00

			_
	Инв. № подл	Подпись и дата	Взам. инв. №

Изм. Кол.уч Лист

№ док. Подпись

Дата

9051- IIMOOC 3

Лист 225

4000.00	2072.05	1.50	40.0	40.1		40.0	24.5	20.7		_		26.70	50.70
4223.83	2963.05	1.50	42.9	42.1	41	42.2	34.5	28.7	7.4	0	0	36.70	52.70
-1580.90	2515.18	1.50	41.4	40.6	39.2	39.8	31.6	22.6	0	0	0	33.90	46.80
-1097.17	2515.18	1.50	42.3	41.5	40	41.3	33.3	25.5	0	0	0	35.50	49.70
-613.45	2515.18	1.50	43.6	42.8	41.9	43.3	36.4	29.4	5.5	0	0	38.00	53.00
-129.72	2515.18	1.50	45.1	44.3	43.6	45.2	38.7	32.5	14.7	0	0	40.20	56.20
354.01	2515.18	1.50	46.6	45.8	44.9	47	40.6	35.5	20.9	0	0	42.30	59.50
837.74	2515.18	1.50	47.4	46.4	45.7	48.1	42.1	38.1	26.2	0	0	43.90	62.70
1321.46	2515.18	1.50	49.7	49	48.5	50.8	44.7	41	30.7	0	0	46.70	64.60
1805.19	2515.18	1.50	50.1	48.9	49.4	51.3	46	43.1	35.4	17.8	0	48.10	68.30
2288.92	2515.18	1.50	65.2	56.2	57.4	55.6	61.9	63.1	59.8	54.1	41.6	66.50	92.00
2772.65	2515.18	1.50	49.3	48.1	47.3	49.3	43.6	40.9	32.6	12.6	0	45.90	66.80
3256.37	2515.18	1.50	46.7	45.9	45.1	47.1	40.5	36.5	24.6	0	0	42.60	60.60
3740.10	2515.18	1.50	44.7	43.9	42.9	44.9	37.7	32.9	17.5	0	0	39.90	56.80
4223.83	2515.18	1.50	43.2	42.4	41.4	43.1	35.5	29.9	9.6	0	0	37.70	53.40
-1580.90	2067.32	1.50	41.8	41	38.6	39	31.3	22.2	0	0	0	33.20	47.30
-1097.17	2067.32	1.50	42.8	42	39.9	40.7	33.5	25.3	0	0	0	35.20	50.40
-613.45	2067.32	1.50	44.2	43.5	42.2	43.9	36.4	29.5	9.4	0	0	38.30	53.70
-129.72	2067.32	1.50	45.9	45.2	44.5	46.2	39.4	33.1	17.2	0	0	41.10	57.10
354.01	2067.32	1.50	46.8	45.9	45	47.4	41.3	36.7	24.1	0	0	43.00	61.00
837.74	2067.32	1.50	48.9	48.2	47.3	50.1	44	40.2	29.8	0		46.00	63.80
1321.46	2067.32	1.50	51.3	50.6	50.6	53.4	47.5	43.7	34.9	6	0	49.50	66.40
1805.19	2067.32	1.50	56.8	54.8	55.1	56.8	57.6	55.1	49.1	39	19	59.00	82.00
2288.92	2067.32	1.50	61.2	57.9	56.4	56.3	59	58.8	54.5	47.4	33.3	62.20	89.10
2772.65	2067.32	1.50	49.9	48.8	48.4	51.4	45.2	42.1	33.5	12.6	0	47.50	67.50
3256.37	2067.32	1.50	47.5	46.7	46	48.5	41.8	38	26.2	0	0	44.00	61.90
3740.10	2067.32	1.50	45.4	44.6	43.8	45.9	38.9	34.3	19.6	0	0	41.00	57.90
4223.83	2067.32	1.50	43.7	42.9	41.8 38.7	43.7 39.2	36.2 31.7	30.7 22.6	10.6	0	0	38.40 33.50	54.20 47.50
-1580.90	1619.45	1.50	41.3 42.2	40.5		39.2	31./	25.8	0.8	0			50.80
-1097.17	1619.45 1619.45	1.50	43.8	41.4	40.1 42	43.1	36.6	29.3	11.4	0	0	35.60	
-613.45 -129.72	1619.45	1.50	46.6	43	43.4	45.1	38.6	32.5	17.4	0	0	38.00 40.20	54.30 57.40
	1619.45		47.7			48.3	41.5			0			0.7/2/2/2/2/2/2
354.01 837.74	1619.45	1.50	49.5	46.8 48.8	45.8 48.5	49.4	44.8	37.1 39.7	26.2 30	0	0	43.60	62.50 62.50
	1619.45	1.50	54.1	51.8		53.7	49.5		35.5	20.9	0	45.90	68.90
1321.46 1805.19	1619.45	1.50	59.6	58.9	54.5 58.4	63.5	60	42.3 57	50.8	38.8	15.9	50.20 61.70	80.10
2288.92	1619.45	1.50	53.3	52.2	51.3	55	49.1	46.5	39.4	23.6	0	51.60	70.30
2772.65	1619.45	1.50	50.9	50.3	49.4	53	46.2	43.2	33.7	2.3	0	48.70	65.40
3256.37	1619.45	1.50	48	47.3	46.5	49.4	42.5	38.7	26.7	0	0	44.70	61.50
3740.10	1619.45	1.50	45.7	45	44	46.5	39.4	34.7	19.9	0	0	41.50	57.90
4223.83	1619.45	1.50	43.7	43.1	42	44.1	36.6	31.1	11.4	0	0	38.80	54.30
-1580.90	1171.59	1.50	41.4	40.6	38.7	39.2	31.6	22.1	0	0	0	33.50	47.10
-1097.17	1171.59	1.50	42.5	41.7	40.1	41.1	34.1	25.5	2.2	0	0	35.60	50.40
-613.45	1171.59	1.50	42.3	43.2	40.1	43.1	36.4	28.9	12.3	0	0	37.90	54.10
-013.43	1171.59	1.50	46.1	45.3	41.7	39.4	36.9	30.5	19.1	0	0	37.20	58.40
354.01	1171.59	1.50	48.4	47.6	44.6	42.7	40.3	34.1	26.2	8.9	0	40.70	62.00
837.74	1171.59	1.50	51.6	50.2	50.4	48.4	45.7	37.4	28.9	13.9	0	45.70	64.00
1321.46	1171.59	1.50	60.3	60.1	60.2	57.6	63.5	62.2	59.5	50.6	40.2	66.20	68.00
1805.19	1171.59	1.50	66.5	66.4	64.3	69	64.8	63.3	57.5	54.4	39.1	67.70	80.10
2288.92	1171.59	1.50	52	51.3	50.3	54.7	48.1	45.8	38.7	23.4	0	50.90	67.60
2772.65	1171.59	1.50	50.8	50.3	49.2	53.3	46.4	43.8	33.4	5.4	0	48.80	63.50
3256.37	1171.59	1.50	47.9	47.2	46.2	49.4	42.5	38.6	26.2	0	0	44.70	60.90
_ 3230.37	11/1.39	1.50	41.7	71.2	40.2	77.7	74.0	36.0	20.2		1 0	44.70	00.70

	Инв. № подл	Подпись и дата	Взам. инв. №								
Изм.											
Кол.уч					_			_			
	3740.10	1171.59 1.50 45.7	44.9 43.		39.3	34.5	19.1	0	0	41.40	56.90
Лист	4223.83 -1580.90	1171.59 1.50 43.9 723.73 1.50 42.1	43.1 41. 41.4 36.		36.5 30	31 19.1	11.2	0	0	38.70 30.20	54.00 46.40
	-1097.17	723.73 1.50 42.1	42.8 38.		32.5	22.7	2.1	0	0	32.60	49.60
№ док.	-613.45	723.73 1.50 44.7	44 39.		33.5	25.5	9.9	0	0	33.70	53.10
뭥	-129.72	723.73 1.50 46	45.4 41.		36.6	29.2	18.5	0	0	36.70	57.00
7	354.01	723.73 1.50 48.6	48.2 45.		41.2	31.8	21.6	0	0	41.00	57.60
	837.74 1321.46	723.73 1.50 55 723.73 1.50 54.1	54.5 54. 54 52.		53.8 51	49.3 49	44 42.8	34.8 29.7	13.6 0.6	54.30 53.30	65.00 71.00
Подпись	1805.19	723.73 1.50 57.2	56.5 54.		61.5	60.1	54.5	42.8	13.6	63.50	79.10
N N	2288.92	723.73 1.50 53	52.6 51.		48.3	45.6	37.2	17.6	0	51.10	64.50
σ̈	2772.65	723.73 1.50 49.7	49.3 47.	9 51.9	45	41.7	31.3	0	0	47.40	60.90
	3256.37	723.73 1.50 47.3	46.6 45.		41.6	37.6	24.4	0	0	43.80	59.00
៏	3740.10	723.73 1.50 45.3	44.6 43.		38.7	33.8	17.4	0	0	40.90	55.90
Дата	4223.83 -1580.90	723.73 1.50 43.6 275.86 1.50 41.6	42.8 41. 40.9 36.		36.1 29.2	30.3 17.7	10	0	0	38.30 29.60	52.60 44.90
1-11	-1097.17	275.86 1.50 42.9	42.2 37.		31.1	21	0.6	0	0	31.30	48.20
	-613.45	275.86 1.50 43.8	43.1 38.		32.5	23.6	7.8	0	0	32.60	51.40
	-129.72	275.86 1.50 45.5	44.9 41.	2 39.2	36.1	26	12	0	0	36.00	51.90
	354.01	275.86 1.50 48.5	47.9 46.		41.9	38.3	30.6	18.5	0	44.10	54.60
	837.74	275.86 1.50 50.1	49.6 48.		44.4	41.2	32.3	17	0	46.60	59.00
	1321.46 1805.19	275.86 1.50 51.1 275.86 1.50 51.4	50.7 49. 51 49.		46.6 46.2	43.8 43.3	35.3 34.2	12.1 12.1	0	48.80 48.70	61.20 61.80
	2288.92	275.86 1.50 50.1	49.6 48		45.6	42.7	33.2	5.6	0	47.90	61.00
	2772.65	275.86 1.50 48.2	47.6 46.		42.9	39.2	27.4	0	0	45.10	58.70
	3256.37	275.86 1.50 46.3	45.6 44.		40.2	35.8	21.4	0	0	42.40	56.80
	3740.10	275.86 1.50 44.6	43.9 42.		37.7	32.5	14.7	0	0	39.90	53.80
	4223.83 -1580.90	275.86 1.50 43.1	42.3 41 40.7 35.		35.3	29.3	7.8	0	0	37.60	50.90
9	-1097.17	-172.00 1.50 41.3 -172.00 1.50 42.3	40.7 35. 41.6 36.		28.1 30.2	16.5 19.2	0	0	0	28.60 30.40	43.70 46.40
	-613.45	-172.00 1.50 42.3	41.6 38.		32.5	21.4	0	0	0	32.40	47.40
9051	-129.72	-172.00 1.50 44.8	44.2 42.		37.4	32.6	17.9	0	0	39.40	49.70
1 T	354.01	-172.00 1.50 46.2	45.7 44.		39.6	35.3	22.7	0	0	41.70	52.90
1 <u>-</u>	837.74	-172.00 1.50 47.3	46.8 45.		41.2	37.2	25.3	0	0	43.30	55.70
	1321.46 1805.19	-172.00 1.50 48 -172.00 1.50 48.2	47.5 45. 47.7 45.		42.5 43	38.9 39.5	27.7 28.5	0	0	44.60 45.10	57.10 57.70
\leq	2288.92	-172.00 1.50 47.6	47.2 45.		42.2	38.4	26.5	0	0	44.30	56.20
ПМООС	2772.65	-172.00 1.50 46.5	45.9 44.		40.5	36.3	22.4	0	0	42.60	56.20
	3256.37	-172.00 1.50 45.1	44.4 42.		38.5	33.6	17.4	0	0	40.60	54.30
	3740.10	-172.00 1.50 43.8	43 41.		36.5	30.8	11.6	0	0	38.60	52.00
ါ ယ်	4223.83 -1580.90	-172.00 1.50 42.5 -619.86 1.50 39.5	41.7 40. 38.6 34.		34.4 26.9	28 14.2	5.5	0	0	36.70 27.30	49.60 42.10
1 ~	-1097.17	-619.86 1.50 39.5 -619.86 1.50 40.4	38.6 34. 39.6 35.		30.3	21.1	0	0	0	30.10	42.10
	-613.45	-619.86 1.50 42.5	41.9 41		35.1	28.3	8	0	0	36.80	49.10
	-129.72	-619.86 1.50 43	42.5 41	41.2	35	29.5	11.4	0	0	36.60	47.60
	354.01	-619.86 1.50 44.6	44 42.		37.5	32.3	16.4	0	0	39.50	50.70
	837.74	-619.86 1.50 45.4	44.9 43		38.4	33.7	18.7	0	0	40.50	51.80
	1321.46 1805.19	-619.86 1.50 45.8 -619.86 1.50 46	45.3 43. 45.4 43.		39.3 39.8	35 35.4	21 21.4	0	0	41.40 41.80	53.40
	2288.92	-619.86 1.50 46 -619.86 1.50 45.6	45.4 43. 45.1 43.		39.8	35.4	19.8	0	0	41.30	54.60 53.40
	2772.65	-619.86 1.50 44.9	43.1 43.		38.1	33.2	16.9	0	0	40.20	53.40

44.9

2772.65 -619.86 1.50

Лист 226

44.3

42.6

45.4

38.1

33.2

16.9

53.20

40.20

	Инв. № подл	Подпись	и дата	Взам. инв	. N º							
[
$\overline{}$	3256.37	-619.86 1.50	43.9	43.2	41.6	44.2	36.6	31.1	12.6	0	0	3
	3740.10	-619.86 1.50	42.8	42.1	40.5	42.8	34.9	28.8	7.4	0	0	3
	4223.83	-619.86 1.50	41.8	41	39.4	41.4	33.2	26.3	0.5	0	0	3
		-1067.73 1.50 -1067.73 1.50	38.9 40.8	38 40.1	34.3 39.1	32.3 39.6	27.5 31.9	17.3 23.7	0	0	0	3
		-1067.73 1.50	41.1	40.6	38.7	38.5	31.6	25	0	0	0	3
		-1067.73 1.50	41.9	41.3	40	40	33.5	27.2	3.2	0	0	3
$\overline{}$		-1067.73 1.50	43.5	42.9	41.4	42.8	35.3	29.3	9.4	0	0	3
		-1067.73 1.50	43.9	43.3	41.3	43.6	36	30.6	12.2	0	0	3
		-1067.73 1.50 -1067.73 1.50	44.2 44.2	43.6 43.6	41.6 41.8	44.2 44.4	36.8 37.1	31.5 31.8	13.9 14.6	0	0	3
1		-1067.73 1.50	44.2	43.4	41.7	44.2	36.8	31.4	13.5	0	0	3
+++		-1067.73 1.50	43.5	42.8	41.1	43.5	35.9	30.2	11.3	0	0	3
.1 1 1		-1067.73 1.50	42.8	42	40.3	42.6	34.7	28.5	7.3	0	0	3
		-1067.73 1.50	41.9	41.2	39.4	41.4	33.3	26.6	1.7	0	0	3
		-1067.73 1.50	41.1	40.3	38.6	40.3	31.9	24.3	0	0	0	3
		-1515.59 1.50 -1515.59 1.50	39.4	38.7	37.6	37.6	29.2	19.5 20.7	0	0	0	3
		-1515.59 1.50 -1515.59 1.50	39.5 40	38.9 39.4	36.8 37.7	36.3 37.4	28.6 30.1	22.9	0	0	0	3
		-1515.59 1.50	41.5	40.9	39.2	40.4	32.3	25.1	0	0	0	3
		-1515.59 1.50	42.3	41.7	39.8	41.2	33.2	26.4	2.2	0	0	3
		-1515.59 1.50	42.4	41.8	39.7	41.8	33.8	27.5	4.7	0	0	3
		-1515.59 1.50	42.6	42	40	42.3	34.4	28.3	7.3	0	0	3
		-1515.59 1.50	42.7	42.1	40.2	42.5	34.7	28.6	8.5	0	0	3
		-1515.59 1.50 -1515.59 1.50	42.7 42.2	42 41.6	40.3 39.8	42.3 41.8	34.5 33.8	28.2 27.3	7	0	0	3
		-1515.59 1.50	41.7	41	39.1	41	32.8	25.9	1.1	0	0	3
		-1515.59 1.50	41	40.3	38.4	40.1	31.7	24.2	0	0	0	3
		-1515.59 1.50	40.4	39.5	37.7	39.1	30.4	22.2	0	0	0	3

Лист 227 51.60 49.80

47.70

41.40 45.00 42.80 46.20 47.90 48.70 50.20

51.10 51.00 50.20 49.10

47.50 45.70 41.30 39.00 41.80 43.70 45.60 45.90 47.30 48.10 47.40 46.40 45.30 43.70

Согласовано

Согласовано

읟

Взам. инв.

Подпись и дата

Инв. № подл

9035.1- ПМООС 3 Лист Кол.уч Лист № док. Подпись Дата

Лист

№ док.

Подпись

Дата

Лист

№ док.

Подпись

Дата

Лист

№ док.

Подпись

Дата

Лист

№ док.

Подпись

Дата

Лист

№ док.

Подпись

Дата

Изм.

Кол.уч

Лист

№ док.

Подпись

Дата

Лист

№ док.

Подпись

Дата

Изм.

Кол.уч

Лист

№ док.

Подпись

Дата

Приложение 15

Расчет шума на период строительства

Эколог-Шум. Модуль печати результатов расчета Copyright © 2006-2020 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.4.6.6023 (от 25.06.2020) [3D] Серийный номер 60-00-9653, ООО "Экологическая компания"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коој	1,1,				, ,			· /	•	ie R = 0 астотам			В расчете
		X (M)	подъема (м)			63	125	250	500	1000	2000	4000	8000		
008	Сварочный аппарат	1696.40	1077.90	1.50	54.0	57.0	62.0	59.0	56.0	56.0	53.0	47.0	46.0	60.0	Да
009	Трансформатор	608.30	659.30	1.50	41.0	44.0	49.0	46.0	43.0	43.0	40.0	34.0	33.0	47.0	Да

N	Объект	Координаты точек (X, Y, Высота	Уровни зву 1			,		и, в случ ескими		,,,,,		вных	L а.экв	В расчете
		подъема)	Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	8000				
007	Бетонно- растворный узел	(608.4, 609.5, 0), (599.7, 626.3, 0)	7.5	74.0	77.0	82.0	79.0	76.0	76.0	73.0	67.0	66.0	80.0	Да

1.2. Источники непостоянного шума

N	Объект	Координаты		Уровни з			авных	La.экв		В						
		точек (Х, Ү,	ина							и часто					кс	расчете
		Высота подъема)	(M)	Дистанц ия замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000			
001	Стоянка топливозапра вщиков	(2036, 1859.9, 0), (2035.5, 1847.2, 0)	14.0	7.5	34.1	40.6	36.1	33.1	30.1	30.1	27.1	21.1	8.6	34.1	48.0	Да
002	Стоянка дорожной техники	(2081.5, 1809.2, 0), (2065.1, 1736.1, 0)	30.0	7.5	45.7	52.2	47.7	44.7	41.7	41.7	38.7	32.7	20.2	45.7	67.3	Да
003	Внутренний проезд	(1973.2, 1748.1, 0), (1890, 1384.7, 0)	14.0	7.5	51.1	57.6	53.1	50.1	47.1	47.1	44.1	38.1	25.6	51.1	76.9	Да
004	Стоянка сотрудников	(1641, 858.5, 0), (1624.9, 763.6, 0)	40.0	7.5	45.6	52.1	47.6	44.6	41.6	41.6	38.6	32.6	20.1	45.6	61.3	Да
005	ж/д проезд	(1301.6, 597.4, 0), (729.3, 508.6, 0)	0	7.5	72.0	75.0	80.0	77.0	74.0	74.0	71.0	65.0	64.0	78.4	78.0	Да
006	Стоянка бетоносмесит елей	(693.8, 595.6, 0), (678.5, 621.1, 0)	30.0	7.5	46.7	53.2	48.7	45.7	42.7	42.7	39.7	33.7	21.2	46.7	57.6	Да

1.3. Зоны звукоизоляции

Взам. инв. №

Подпись и дата

N	Объект	Координаты точек	Высо		Зву	коизоля	яция, д	Б, в окт	авных	полоса	х со		Крышк	Дно	В
		(Х, Ү, Высота	та	та среднегеометрическими частотами в Гц						a		расчете			
		подъема)	(M)	31.5	63	125	250	500	1000	2000	4000	8000			
001	Область	(138.9, 108.7, 0),	2.00	0.0	0.0	14.6	18.3	22.7	27.6	33.8	38.7	0.0	Нет	Нет	Да

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3

Лист

ാ	5	1
	J	ι

li i	(211 1 1 (2 1 0)		1	1				
изоляции	(241.1, 167.1, 0),							
шума	(392.9, 218.2, 0),							
	(975.4, 311.6, 0),							
	(1881.6, 430.6, 0),							
	(1877.3, 724, 0),							
	(2439.3, 2011.6, 0),							
	(2283.1, 2992.5, 0),							
	(2064.1, 2729.8, 0),							
	(1907.9, 2916.6, 0),							
	(1321.1, 2414.5, 0),							
	(1605.7, 2074.3, 0),							
	(185.1, 361.7, 0),							
	(139.9, 109.6, 0)							

2. Условия расчета

2.1. Расчетные точки

N	Объект	Коор	одинаты то	чки	Тип точки	В расчете
		Х (м)	Y (m)	Высота подъема (м)		
1	PT1	26.30	-589.70	1.50	Расчетная точка на границе жилой зоны	Да
10	PT10	964.60	272.10	1.50	Расчетная точка на границе жилой зоны	Да
11	PT11	1945.60	411.10	1.50	Расчетная точка на границе жилой зоны	Да
12	PT12	340.50	2156.90	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
13	PT13	898.10	3382.50	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
14	PT14	2197.80	4005.60	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
15	PT15	3269.90	3211.50	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
16	PT16	3435.70	1754.10	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
17	PT17	2879.80	394.70	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
18	PT18	1983.00	-569.90	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
19	PT19	530.20	-812.80	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
2	PT2	350.30	-513.80	1.50	Расчетная точка на границе жилой зоны	Да
20	PT20	-741.00	-361.50	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
21	PT21	-589.70	1018.90	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
22	PT22	1304.50	2416.20	1.50	Расчетная точка на границе производственной зоны	Да
23	PT23	2137.10	2835.50	1.50	Расчетная точка на границе производственной зоны	Да
24	PT24	2401.00	2345.00	1.50	Расчетная точка на границе производственной зоны	Да
25	PT25	2118.90	1242.00	1.50	Расчетная точка на границе производственной зоны	Да
26	PT26	1749.40	406.40	1.50	Расчетная точка на границе производственной зоны	Да
27	PT27	397.10	210.20	1.50	Расчетная точка на границе производственной зоны	Да
28	PT28	324.70	551.20	1.50	Расчетная точка на границе производственной зоны	Да
29	PT29	1051.00	1459.80	1.50	Расчетная точка на границе производственной зоны	Да
3	PT3	773.70	-648.10	1.50	Расчетная точка на границе жилой зоны	Да
4	PT4	1080.20	-589.70	1.50	Расчетная точка на границе жилой зоны	Да
5	PT5	3013.00	148.90	1.50	Расчетная точка на границе жилой зоны	Да
6	PT6	3015.90	-20.40	1.50	Расчетная точка на границе жилой зоны	Да
7	PT7	3269.90	306.60	1.50	Расчетная точка на границе жилой зоны	Да
8	PT8	3415.80	2583.80	1.50	Расчетная точка на границе жилой зоны	Да
9	PT9	1853.90	4014.40	1.50	Расчетная точка на границе жилой зоны	Да

2.2. Расчетные площадки

Взам. инв. №

Подпись и дата

Инв. № подл

N	Объект	Координат	ы точки 1	Координат	ы точки 2	Ширина	Высота	Шаг се	гки (м)	В
						(M)	подъема			расчете
							(M)			
		X (m) Y (m)		Х (м)	Y (m)			X	Y	
004	Расчетная плошалка	-1138.60 1499.90		3810.00	1499.90	5364.60	1.50	449.87	487.69	Ла

Вариант расчета: "Новый вариант расчета" 3. Результаты расчета (расчетный параметр "Звуковое давление")

3.1. Результаты в расчетных точках

Точки типа: Расчетная точка на границе производственной зоны

Расче	тная точка	Координа	ты точки	Высота (м)	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
N	Название	Х (м)	Y (м)												
22	PT22	1304.50	2416.20	1.50	44.4	47.3	37	29.1	20	11.6	0	0	0	26.30	26.30
23	PT23	2137.10	2835.50	1.50	41.8	44.7	34.1	25.8	15.9	5.7	0	0	0	23.20	23.20
24	PT24	2401.00	2345.00	1.50	42.9	45.8	35.3	27.1	17.5	8.7	0	0	0	24.50	24.50
25	PT25	2118.90	1242.00	1.50	47.8	51.1	40.6	33.1	24.5	17.2	0	0	0	30.30	32.80

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

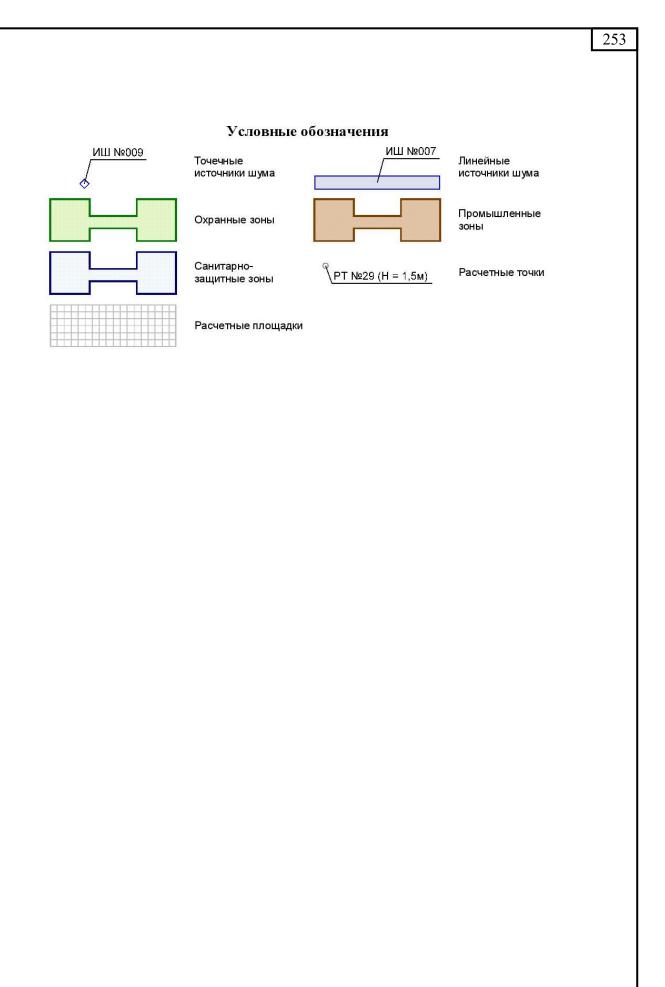
0	na	5	1	_ 1	П	1	$\mathbf{\Omega}$	Ω	7
71	L	7	. 1	_		IVI		,, ,	

Лист 240

26	PT26	1749.40	406.40	1.50	52.6	55.6	45.7	38.6	30.6	24.5	10.9	0	0	35.60	35.60
27	PT27	397.10	210.20	1.50	53.6	56.5	46.7	39.6	31.7	25.7	12	0	0	36.70	36.70
28	PT28	324.70	551.20	1.50	54.5	57.5	47.7	40.6	32.8	27	14.7	0	6.4	37.70	37.70
29	PT29	1051.00	1459.80	1.50	50.5	53.5	43.5	36.3	28	21.5	5.6	0	0	33.30	33.30

Точки типа: Расчетная точка на границе санитарно-защитной зоны

Расче	Расчетная точка Координаты точк		ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс
			(M)												
N	Название	X (m)	Y (m)												
12	PT12	340.50	2156.90	1.50	45.1	47.9	37.8	30	21.1	12.8	0	0	0	27.10	27.10
13	PT13	898.10	3382.50	1.50	40.8	43.6	33.1	24.6	14.4	0	0	0	0	22.00	22.00
14	PT14	2197.80	4005.60	1.50	38.6	41.3	30.5	21.5	10.7	0	0	0	0	19.30	19.30
15	PT15	3269.90	3211.50	1.50	39	41.8	31	22.1	11.4	0	0	0	0	19.80	19.80
16	PT16	3435.70	1754.10	1.50	41.2	44.1	33.6	25.1	15.2	0.9	0	0	0	22.60	22.60
17	PT17	2879.80	394.70	1.50	44.4	47.3	37.1	29.2	20	11.9	0	0	0	26.40	26.40
18	PT18	1983.00	-569.90	1.50	46.3	49.2	39.1	31.5	22.8	15.2	0	0	0	28.60	28.60
19	PT19	530.20	-812.80	1.50	46.6	49.5	39.4	31.8	23.1	15.5	0	0	0	28.90	28.90
20	PT20	-741.00	-361.50	1.50	44.1	46.9	36.7	28.8	19.7	11	0	0	0	26.00	26.00
21	PT21	-589.70	1018.90	1.50	45.6	48.5	38.4	30.7	21.9	13.6	0	0	0	27.80	27.80


Точки типа: Расчетная точка на границе жилой зоны

і очки	типа: Расчет	гная точка	на границе	: жилои з	оны										
Расч	Расчетная точка Координаты точки		Высота (м)	31.5	63	125	250	500	1000	2000	4000	8000	La.экв	La.макс	
N	Название	Х (м)	Y (м)	(M)											
1	PT1	26.30	-589.70	1.50	46.4	49.2	39.2	31.5	22.8	15	0	0	0	28.60	28.60
10	PT10	964.60	272.10	1.50	59.4	62.4	52.7	45.8	38.1	32.7	21.5	0	17	42.80	42.80
11	PT11	1945.60	411.10	1.50	50.5	53.5	43.6	36.3	28.1	21.6	6.1	0	0	33.30	33.30
2	PT2	350.30	-513.80	1.50	47.9	50.8	40.8	33.3	24.8	17.8	0	0	0	30.40	30.40
3	PT3	773.70	-648.10	1.50	48	50.9	40.9	33.4	24.9	17.7	0	0	0	30.50	30.50
4	PT4	1080.20	-589.70	1.50	48.5	51.4	41.4	34	25.6	18.5	0	0	0	31.00	31.00
5	PT5	3013.00	148.90	1.50	43.7	46.5	36.3	28.3	18.9	10.6	0	0	0	25.50	25.50
6	PT6	3015.90	-20.40	1.50	43.5	46.3	36	28	18.6	10.2	0	0	0	25.30	25.30
7	PT7	3269.90	306.60	1.50	42.7	45.6	35.2	27.1	17.6	8.8	0	0	0	24.40	24.40
8	PT8	3415.80	2583.80	1.50	39.9	42.7	32.1	23.4	13	0	0	0	0	21.00	21.00
9	PT9	1853 90	4014 40	1.50	38.8	41.6	30.8	21.8	11	0	0	0	0	19 60	19 60

Согласовано				
	Base wer No	DSaM. MRB. N≅		
	CTCD N. JOHDOOD	подпись и дага		
	Mun Nonon	ипв. изподл		

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3 Лист 242 Лист № док. Дата Изм. Кол.уч Подпись

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

Взам. инв. №

Подпись и дата

Инв. № подл

9035.1– ΠMOOC 3

Лист

№ док.

Подпись

Дата

Лист

Изм.

Кол.уч

9035.1- ПМООС 3

Лист 245

Согласовано

№ док.

Подпись

Дата

Лист

Изм.

Кол.уч

246

Согласовано

Изм.

Кол.уч

Лист

№ док.

Подпись

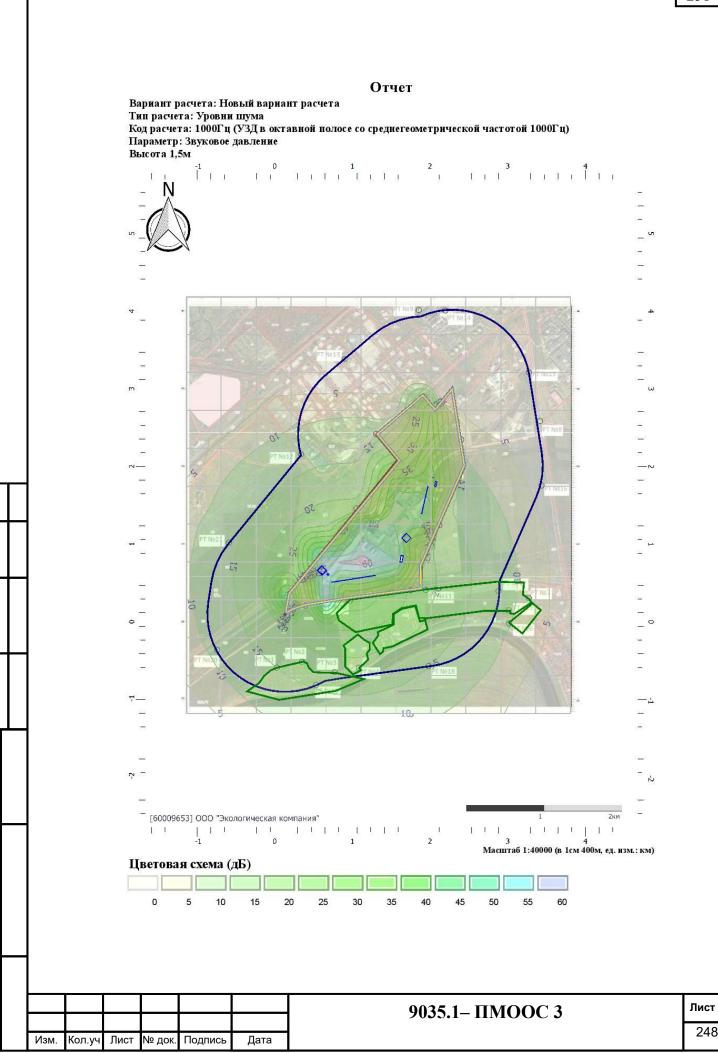
Дата

9035.1- ПМООС 3

Лист 247

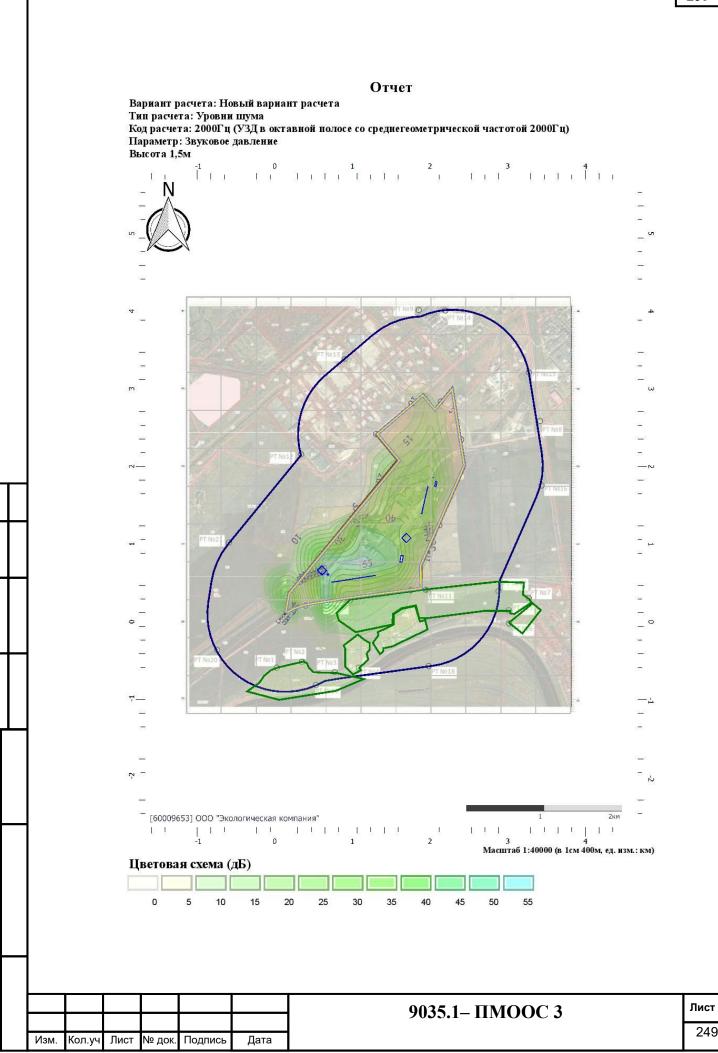
Согласовано

Изм.


Кол.уч

Лист

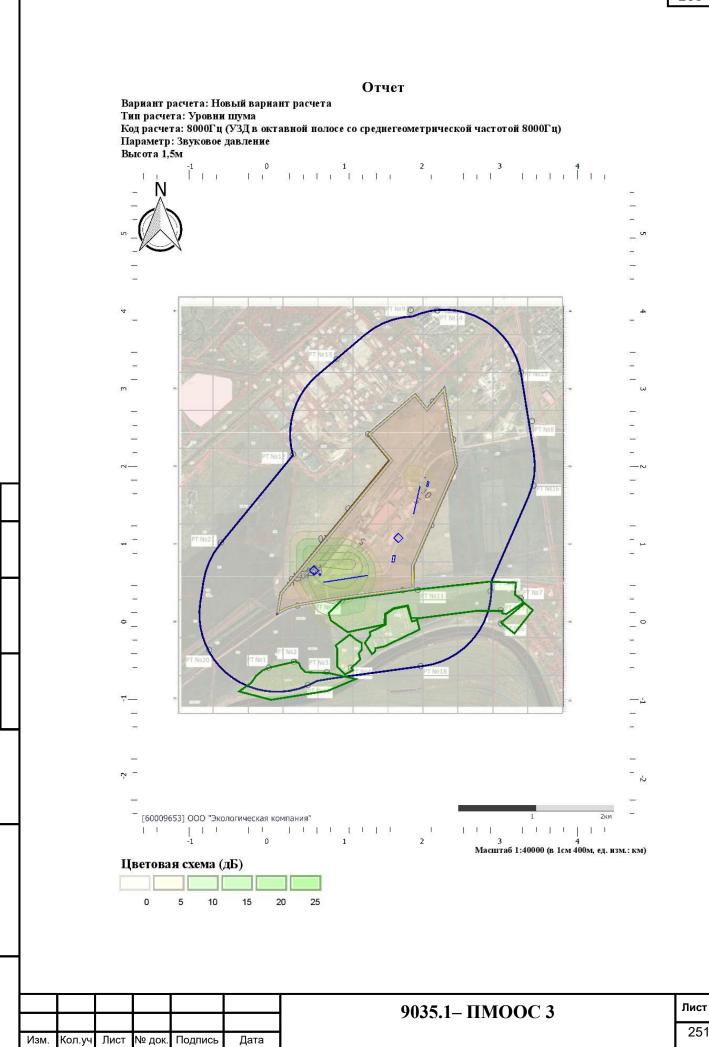
№ док.


Подпись

Дата


Взам. инв. №

Подпись и дата


Взам. инв. №

Подпись и дата

Взам. инв. №

Подпись и дата

Взам. инв. №

Подпись и дата

Кол.уч

Лист № док.

Подпись

Дата

Лист 253

9035.1- ПМООС 3

Согласовано

Взам. инв. №

Подпись и дата

Инв. № подл

Изм.

Кол.уч

Лист

№ док.

Подпись

Дата

Приложение 16

Расчет объемов образования отходов на период эксплуатации

1. Ртутные лампы, люминесцентные ртутьсодержащие трубки отработанные и брак (4 71 101 01 52 1)

Количество образования отхода принято в соответствии с разделом TP и составляет: $0,422\ \text{т/год}.$

2. Аккумуляторы свинцовые отработанные неповрежденные, с электролитом (9 20 110 01 53 2)

Количество образования отхода принято в соответствии с разделом TP и составляет: 1,58 т/гол.

3. Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15 % и более) (91920401603)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 1,6 т/год.

4. Фильтры очистки топлива автотранспортных средств отработанные (9 21 303 01 52 3)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 0,09 т/гол.

5. Отходы масел индустриальных (4 06 130 01 31 3)

Количество образования отхода принято в соответствии с разделом TP и составляет: 31,5 T/год.

6. Лента конвейерная резинотканевая, утратившая потребительские свойства, незагрязненная (43112211524)

Количество образования отхода принято в соответствии с разделом TP и составляет: 5,2 T/год.

7. Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) (73310001724)

Расчёт проведен на основании и с учётом следующих нормативно-методических документов:

- Приказ Министерства природных ресурсов и экологии Саратовской области от 27.09.2022г. № 481 «Об установлении нормативов накопления твердых коммунальных отходов на территории Саратовской области»

Образование отходов определяется исходя из фактических данных по предприятию, в соответствии с количеством работающих сотрудников.

Исходные данные для расчёта:

инв. №

Взам.

Подпись и дата

1нв. № подл

Норматив образования отходов – 20,07 кг/год на 1 сотрудника.

 $M = 20.07 \times 540 \times 10^{-3} = 10.84$ т/год

8. Пыль газоочистки (3 51 222 21 42 4)

Количество образования отхода принято в соответствии с разделом TP и составляет: 31250,0 т/год.

9. Шлак электросталеплавильный (3 51 210 11 20 4)

Количество образования отхода принято в соответствии с разделом TP и составляет: 240000,0 т/год.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3

Лист

10. Окалина при непрерывном литье заготовок (3 51 230 01 40 4)

Количество образования отхода принято в соответствии с разделом TP и составляет: 4700,0 т/год.

11. Шлак сварочный (9 19 100 02 20 4)

Количество образования отхода принято в соответствии с разделом TP и составляет: 0,28 т/год.

12. Смет с территории предприятия малоопасный (7 33 390 01 71 4)

Отход относится к 4 классу опасности. К данному отходу принадлежит смет с территории предприятия. Уборке подлежит 234198 м^2 . Расчет количества образования смета с территории при уборке твердых покрытий (М смета) производится по формуле:

M смета = $S \cdot m \cdot 10^{-3}$ (т/год),

где S – площадь твердых покрытий внутренней территории, подлежащих уборке, M^2 ; M^2 ; M^2 удельная норма образования смета, M^2 .

Удельная норма образования смета с твердого покрытия составляет 5-15 кг/м 2 . Норматив: Свод правил СП 42.13330.2016 "Градостроительство. Планировка и застройка городских и сельских поселений". Актуализированная редакция СНиП 2.07.01-89* (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 30 декабря 2016 г. N 1034/пр).

Нормативное количество смета составит:

 \dot{M} смета = 234198 · 5,6 · 10⁻³ = 1310,0 т/год.

Количество отходов составит 1310,0 т/год.

13. Покрышки пневматических шин с металлическим кордом отработанные (9 21 130 02 50 4)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 5,28 т/год.

14. Лом футеровок печей и печного оборудования производства черных металлов (9 12 109 11 20 4)

Количество образования отхода принято в соответствии с разделом TP и составляет: 5000 т/гол.

15. Лом и отходы черных металлов несортированные, содержащие инородные включения (4 61 020 00 00 0)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 1000 т/год.

16. Ткань фильтровальная из натурального волокна, загрязненная металлами с преимущественным содержанием железа (4 43 211 12 61 4)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 1300 т/гол.

17. Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная (40211001624)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов определяется по формуле:

$$P = N_i \times m_i \times 10^{-3},$$

읟

ИНВ.

Взам.

Подпись и дата

I						
	Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ΠMOOC 3

Лист

где: N_i – количество спецодежды, шт.; m_i – вес спецодежды i – вида, кг.

Наименование спецодежды	n_{i}	ті, кг	М, т/год
Белье теплое	540	0.95	0,513
Костюм	540	1.45	0,783
Итого			1,296

Годовое количество отходов составит 1,296 т/год.

18. Обувь кожаная рабочая, утратившая потребительские свойства (40310100524)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов определяется по формуле:

Мсоб =
$$\sum$$
тјсоб x Nj x Кјизн x Кјзагр x 10-3 j = 1
Nj = Pjф / Тјн

где Мсоб-масса вышедшей из употребления спецобуви, т/год;

тісоб – масса одной пары спецобуви і-того вида в исходном состоянии, кг;

Nj – количество пар вышедшей из употребления спецобуви j-того вида, шт/год;

Кјизн–коэффициент, учитывающий потери массы спецобуви ј-того вида в процессе эксплуатации, доли от 1; Кіизн (кож) = 0.9, Кіизн (резина) = 0.9

Kјзагр — коэффициент, учитывающий загрязненность спецобуви j-того вида, доли от 1; Kізагр (обувь) = 1,1.

Ріф – количество пар изделий спецобуви ј-того вида, находящихся в носке, шт.;

Тін - нормативный срок носки спецобуви і-того вида, лет;

т- число видов спецобуви, шт.

За расчетную единицу принято:

- единица используемого сырья.

No	Наименование	Количество	Периодичность	Macca,	N	Мсоб
п/п				КГ		
1	Обувь специальная кожаная и	540	1р/год	2	540	1,188
	из других материалов для					
	защиты от механических					
	воздействий (ударов,					
	проколов, порезов)					
		Всего:				1,188

19. Светильники со светодиодными элементами в сборе, утратившие потребительские свойства (48242711524)

Количество образования отхода принято в соответствии с разделом TP и составляет: 0.05 т/год.

20. Осадок очистных сооружений дождевой (ливневой) канализации малоопасный (72110001394)

Количество образования отхода принято в соответствии с разделом TP и составляет: 18,780 т/год.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

ИНВ. №

Взам.

Подпись и дата

9035.1– ПМООС 3	9035.1	l – ПМ	000	J 3
-----------------	--------	--------	------------	------------

Лист

21. Сульфоуголь отработанный при водоподготовке (71021201494)

Количество образования отхода принято в соответствии с разделом TP и составляет: 4,130 т/год.

22. Пищевые отходы кухонь и организаций общественного питания несортированные (73610001305)

Отход относится к 5 классу опасности и образуется при работе столовой. Расчет проведен по числу посадочных мест и нормативу накопления на одно посадочное место. Метод расчета проведен по нормативам накопления отходов. Столовая рассчитана на 200 мест. Расчет норматива количества образования пищевых отходов от работы столовой рассчитывается по формуле:

$$M_{\Pi} = N \cdot m \cdot \rho \cdot 10^{-3}$$
, т/год

где N — количество посадочных мест в столовой; m — удельная норма образования отхода с 1 посадочного места, равно 220,16 кг/год (Приказ Министерства природных ресурсов и экологии Саратовской области от 27.09.2022г. № 481 «Об установлении нормативов накопления твердых коммунальных отходов на территории Саратовской области»).

 $\Sigma = 200$ посадочных мест.

Расчет: $M_{\Pi} = 200 \cdot 220,16 \cdot 10^{-3} = 44,03$ т/год.

23. Лом и отходы стальные несортированные (46120099205)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 28600 т/год.

24. Остатки и огарки стальных сварочных электродов (91910001205)

Количество образования отхода принято в соответствии с разделом TP и составляет: 0,27 т/год.

25. Стружка стальная незагрязненная (36121202225)

Количество образования отхода принято в соответствии с разделом TP и составляет: 100,0 т/год.

26. Тормозные колодки отработанные без накладок асбестовых (9 20 310 01 52 5)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 1,9 т/год.

27. Лом и отходы изделий из полиэтилена незагрязненные (4 34 991 21 72 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 30,45 т/год.

28. Лом и отходы стальные в кусковой форме незагрязненные (4 61 200 02 21 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 6400 т/год.

29. Лом и отходы алюминия несортированные (4 62 20006 20 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 5,8 T/год.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

읟

ИНВ.

Взам.

Подпись и дата

Инв. № подл

9035.1- ПМООС 3

Лист

30. Абразивные круги отработанных, лом отработанных абразивных кругов (4 56 10001 51 5)

Количество образования отхода принято в соответствии с разделом ТР и составляет: 0,26 т/год.

31. Электроды графитированные, отработанные, незагрязненных опасными веществами (3 51 901 01 20 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 1580.0 т/год.

32. Отходы упаковки из комбинированного материала на основе бумаги и/или картона, полимеров и алюминиевой фольги (4 05 216 21 52 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 260,0 т/год.

33. Отходы очистки железнодорожных грузовых вагонов при перевозке лома и отходов черных металлов практически неопасные (9 22 11413 20 5)

Количество образования отхода принято в соответствии с разделом TP и составляет: 20000.0 т/год.

34. Респираторы фильтрующие текстильные, утратившие потребительские свойства (49110311615)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов определяется по формуле:

Осод= \sum Micод x Ni x Кіизн x Кізагр x 10^{-3}

 $Ni = Pi\phi / TiH$

ИНВ. №

Взам.

Подпись и дата

Где Осод – масса вышедшей из употребления СИЗ, т/год;

Місод – масса единицы изделия СИЗ і-того вида в исходном состоянии, кг;

Ni – количество вышедших из употребления изделий i-того вида, шт/год;

Кіизн — коэффициент, учитывающий потери массы изделий і-того вида в процессе эксплуатации, доли от 1; Кіизн (x/6) = 0.8,

Кізагр — коэффициент, учитывающий загрязненность спецодежды і-того вида, доли от 1; Кізагр (спецодежда) = 1,15; Кізагр (обувь) = 1,1.

10-3 – коэффициент перевода кг в т;

Ріф – количество изделий і-того вида, находящихся в носке, шт.;

Тін – нормативный срок носки изделий і-того вида, лет;

За расчетную единицу принято:

- единица используемого сырья.

Вес изделий принят по инструкции к изделию.

№ п/п	Наименование	Количество	Периодичность	Масса, кг	N	Мсоб
1	Респираторы	1000	1р/год	0,06	1000	0,06
	Всего:					0,06

35. Отходы бумаги и картона от канцелярской деятельности и делопроизводства (40512202605)

Количество образования отхода принято в соответствии с разделом TP и составляет: 0.02 т/год.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата	

9035.1- ΠMOOC 3

Лист

Приложение 17

Расчет объемов образования отходов на период строительства

1. Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15 % и более) (91920401603)

$$M1 = m \times L \times K_{3arp} \times 10^{-3}$$
, т/год

где: m - удельная норма замасленного обтирочного материала на 10 тыс. км пробега, кг /10000км,;

L - общий годовой пробег по предприятию, тыс. км,

 $K_{\text{загр}}$ - коэффициент, учитывающий загрязненность ветоши, доли от 1, $K_{\text{загр}} = 1,15$

Расчет выполнен согласно «Методических рекомендаций по оценке объемов образования отходов производства и потребления», ГУ НИЦПУРО М., 2003 г.

№ п/п	Марка автотранспорта	Кол- во	Тип автотранспорта	Коэффициент, учитывающий загрязненность ветоши	Удельная норма замасленного обтирочного материала на 10 тыс. км пробега (m), кг / км	Среднегодовой пробег одной единицы (П), тыс. км/год	Количество обтирочного материала (М1.), т
1	Экскаватор Hitachi ZX 240-3	5	спецавтотранспорт	1,15	2,18	2	0,02507
2	Экскаватор Hitachi ZX 120	3	спецавтотранспорт	1,15	2,18	2	0,015042
3	Экскаватор-погрузчик JCB 3 CX	2	спецавтотранспорт	1,15	2,18	2	0,010028
4	Бульдозер Komatsu D65	5	спецавтотранспорт	1,15	2,18	2	0,02507
5	Бульдозер ДЗ-42	3	спецавтотранспорт	1,15	2,18	2	0,015042
6	Автогрейдер ДЗ-122	2	спецавтотранспорт	1,15	2,18	2	0,010028
7	Кран на спецшасси Liebherr LTM 1500	1	спецавтотранспорт	1,15	2,18	2	0,005014
8	Кран на спецшасси Liebherr LTM 1080/1	2	спецавтотранспорт	1,15	2,18	2	0,010028
9	Кран гусеничный ДЭК-401	3	спецавтотранспорт	1,15	2,18	2	0,015042
10	Кран автомобильный КС-55729-3В	4	спецавтотранспорт	1,15	2,18	2	0,020056
11	Кран автомобильный КС-4572	8	спецавтотранспорт	1,15	2,18	2	0,040112
12	Погрузчик ТО-18Б	1	спецавтотранспорт	1,15	2,18	2	0,005014
13	Автогидроподъемник АГП-28	2	спецавтотранспорт	1,15	2,18	2	0,010028
14	Самоходный подъемник Haulotte HA32PX	2	спецавтотранспорт	1,15	2,18	2	0,010028
15	Автобетононасос Putzmeister BSF 47-5	2	спецавтотранспорт	1,15	2,18	2	0,010028
16	Автобетоносмеситель СБ-172	8	спецавтотранспорт	1,15	2,18	2	0,040112
17	Автобетоносмеситель СБ-92-1А	4	спецавтотранспорт	1,15	2,18	2	0,020056

Инв. № подл Подпись и дата

Изм.

Кол.уч

Лист

№ док.

Подпись

Дата

9035.1- ПМООС 3

Лист 259

18	Автомобиль-тягач КамАЗ-65116 с полуприцепом	6	спецавтотранспорт	1,15	2,18	2	0,030084
19	Автомобиль-тягач КамАЗ-65116 с низкорамным полуприцепом	2	спецавтотранспорт	1,15	2,18	2	0,010028
20	Автомобиль-самосвал КамАЗ-6520	6	спецавтотранспорт	1,15	2,18	3	0,045126
21	Автомобиль-самосвал КамАЗ-5510	5	спецавтотранспорт	1,15	2,18	3	0,037605
22	Автомобиль бортовой КамАЗ-53212	8	спецавтотранспорт	1,15	2,18	2	0,040112
23	Автомобиль бортовой ГАЗ-33021	3	спецавтотранспорт	1,15	2,18	3	0,022563
	Всего:						0,47

Общее количество отхода обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15 %) составит: **0,47 т.**

2. Шлак сварочный (91910002204)

Образуется при проведении сварочных работ.

Отход в виде шлака согласно справочным данным равен 10 % от массы электродов.

[Соколов, И.И. Газовая сварка и резка металлов: учебник для профессиональнотехнических учебных заведений/ И.И. Соколов.-М.: Высшая школа, 1978.-318 с.] 16.8*0,10=1,680

Общее количество отхода шлак сварочный составит: 1,680 т.

3. Отходы битума нефтяного (30824101214)

Норма потерь отхода в виде битума нефтяного согласно справочным данным равняется 3%.

[Сборник типовых норм потерь материальных ресурсов в строительстве (дополнение к РДС 82-202-96)]

$$90.5 * 0.03 = 2.715$$

ИНВ.

Взам.

Подпись и дата

Общее количество отхода битума нефтяного составит: 2,715 т.

4. Отходы рубероида (82621001514)

Норма отходов в период строительного производства при устройстве кровли при применении материалов рулонных кровельных согласно справочным данным равняется 3%.

[Сборник типовых норм потерь материальных ресурсов в строительстве (дополнение к РДС 82-202-96)]

$$70,831 * 0,03 = 2,125$$

Общее количество отхода рубероида составит: 2,125 т.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3

Лист

5. Тара из прочих полимерных материалов, загрязненная лакокрасочными материалами (содержание менее 5%) (43819102514)

Расчёт выполняется в соответствии с MPO-3-99. Методика расчёта объёмов образования отходов. Отходы, образующиеся при использовании лакокрасочных материалов. СПб, 1999, по формуле:

$$P = \Sigma(Q_i / M_i \times m_i) \times 10^{-3}$$

где: P - масса отходов тары, загрязненной лакокрасочными материалами, т/год;

 Q_i – расход лакокрасочных материалов i-го вида, кг;

 M_i – вес лакокрасочных материалов *i*-го вида в одной упаковке, кг;

 m_i – вес пустой упаковки из-под лакокрасочных материалов i-го вида, кг.

$$P = (8\ 000/15,0 * 0,5) * 10^{-3} = 1,067$$

Общее количество отхода тары из прочих полимерных материалов, загрязненная лакокрасочными материалами (содержание менее 5%) составит: **1,067 т.**

6. Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная (40211001624)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов определяется по формуле:

Осод=
$$\sum M_{i\text{сод}} x N_i x K_{i\text{изн}} x K_{i\text{загр}} x 10^{-3}$$

 $N_i = P_{i\phi} / T_{i\text{H}}$

где Осод – масса вышедшей из употребления спецодежды, т/год;

Місод – масса единицы изделия спецодежды і-того вида в исходном состоянии, кг;

Ni – количество вышедших из употребления изделий i-того вида, шт/год;

Кіизн — коэффициент, учитывающий потери массы изделий і-того вида в процессе эксплуатации, доли от 1; Кіизн $(x/\delta) = 0.8$,

Кізагр – коэффициент, учитывающий загрязненность спецодежды і-того вида, доли от 1;Кізагр (спецодежда) = 1,15; Кізагр (обувь) = 1,1.

 10^{-3} – коэффициент перевода кг в т;

읟

Взам. инв.

Подпись и дата

Инв. № подл

Ріф – количество изделий і-того вида, находящихся в носке, шт.;

Тін – нормативный срок носки изделий і-того вида, лет;

№	Наименование	Количество	Периодичность	Macca,	N	Осод
п/п				кг		
1	Костюм (в том числе	520	1 р/на 1 год	2,3	520	1,1
	отдельными предметами:					
	куртка, брюки или					
	полукомбинезон)					
2	Изделия трикотажные	520	1 р/1 мес	0,1	6240	0,57
	перчаточные					

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3

Лист

Итого:			1,67

При периоде строительства, равном 24 мес., общий объем отходов составит 3,34 т.

Общее количество отхода спецодежды из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная составит: **3,34 т.**

7. Обувь кожаная рабочая, утратившая потребительские свойства (40310100524)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов определяется по формуле:

$$M$$
соб = $\sum m_{j$ соб $x \ Nj \ x \ K_{j$ изн $x \ K_{j}$ загр $x \ 10^{-3} \ j = 1$ $Nj = P_{j}$ ф / T_{j} н

где Мсоб-масса вышедшей из употребления спецобуви, т/год;

тісоб – масса одной пары спецобуви ј-того вида в исходном состоянии, кг;

Nj – количество пар вышедшей из употребления спецобуви j-того вида, шт/год;

Кјизн–коэффициент, учитывающий потери массы спецобуви ј-того вида в процессе эксплуатации, доли от 1; Кіизн (кож) = 0.9, Кіизн (резина) = 0.9

Кјзагр — коэффициент, учитывающий загрязненность спецобуви ј-того вида, доли от 1; Кізагр (обувь) = 1,1.

Ріф – количество пар изделий спецобуви ј-того вида, находящихся в носке, шт.;

Тјн - нормативный срок носки спецобуви ј-того вида, лет;

т- число видов спецобуви, шт.

№	Наименование	Количество	Периодичность	Macca,	N	Мсоб
п/п				КГ		
1	Обувь специальная кожаная и из других материалов для защиты от механических воздействий (ударов, проколов, порезов)	520	1 р/на 2 года	2	260	0,51
	В	сего:				0,51

При периоде строительства, равном 24 мес., общий объем отходов составит 1,02 т.

Общее количество отхода обуви кожаной рабочей, утратившей потребительские свойства составит: 1,02 т.

8. Обрезь и лом гипсокартонных листов (82411001204)

Норма потерь отхода в виде обрези и лома гипсокартонных листов согласно справочным данным равняется 1%.

[Сборник типовых норм потерь материальных ресурсов в строительстве (дополнение к РДС 82-202-96)]

$$76,4 * 0,01 = 0,764$$

읟

ИНВ.

Взам.

Подпись и дата

Man	Копуи	Пист	No пок	Подпись	Дата
VISIVI.	кол.уч	JINCI	тч≌ док.	ПОДПИСЬ	дата

9035.1- ΠMOOC 3

Лист

Общее количество отхода обрези и лома гипсокартонных листов составит: 0,764 т.

9. Отходы прочих теплоизоляционных материалов на основе минерального волокна незагрязненные (45711901204)

Норма потерь отхода в виде теплоизоляционных материалов на основе минерального волокна незагрязненные согласно справочным данным равняется 3%.

[Сборник типовых норм потерь материальных ресурсов в строительстве (дополнение к РДС 82-202-96)]

$$137.4 * 0.03 = 4.121$$

Общее количество отхода теплоизоляционных материалов на основе минерального волокна незагрязненные составит: **4,121 т.**

10. Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) (73310001724)

Расчёт нормативного количества накопления твердых коммунальных отходов от отдельно стоящих объектов общественного назначения, торговых и культурно-бытовых учреждений (определение норматива образования отходов производится методом «по справочным таблицам удельных НОО»).

Формула расчёта нормативной массы образования ТКО и отходов потребления на производстве, подобных коммунальным:

$$M = Q * K * N * Kn$$

где Q - кол-во расчётных единиц (человек, мест или кв.м площади);

K - доля несортированных ТКО, по умолчанию K=1, либо (для расчета с выделением крупногабаритных) K=0.95, согласно Приложению 11 к СНиП 2.07.01-89;

N - норматив в килограммах на 1 расчётную единицу;

Kn = 0.001 - коэффициент перевода из килограмм в тонны.

Расчёт проведен на основании и с учётом следующих нормативно-методических документов:

- Приказ Министерства природных ресурсов и экологии Саратовской области от 27.09.2022 г.

№ 481 «Об установлении нормативов накопления твердых коммунальных отходов на территории Саратовской области»

Образование отходов определяется исходя из фактических данных по предприятию, в соответствии с количеством работающих сотрудников.

Исходные данные для расчёта:

Согласовано

읟

ИНВ.

Взам.

Подпись и дата

Инв. №подл

Количество сотрудников - 634 чел.

Норматив образования отходов – 20,07 кг/год на 1 сотрудника

 $M = 634 \times 1 \times 20,07 \times 0,001 = 12,72$ (3a 12 Mec.)

При периоде строительства, равном 24 мес., общий объем отходов составит 25,44 т.

Общее количество отхода мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) составит: **25,44 т.**

11. Отходы (мусор) от строительных и ремонтных работ (89000001724)

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

9035.1- ПМООС 3

Лист

Количество (масса) образующихся за год отходов рассчитывается по формуле:

$$M = 0.01 * Q * k, т/год$$

где Q - среднегодовой расход строительных материалов, т;

к - средний коэффициент потерь материалов, переходящих в отход, %.

[Сборник типовых норм потерь материальных ресурсов в строительстве (Дополнение к РДС 82-202-96 Правила разработки и применения нормативов трудноустранимых потерь и отходов в строительстве). Госстрой России, 1998.]

 $Q_1 = 235,000$ — средний расход строительных материалов, т

k= 3,9 - Средний коэффициент потерь материалов, переходящих в отход, %

М= 9,165 - Нормативная масса, т

Общее количество отхода (мусора) от строительных и ремонтных работ составит: 9,165 т.

12. Лом железобетонных изделий, отходы железобетона в кусковой форме (82230101215)

Норма потерь железобетона составляет 2% от потребности.

[Сборник типовых норм потерь материальных ресурсов в строительстве (Дополнение к РДС 82-202-96 Правила разработки и применения нормативов трудноустранимых потерь и отходов в строительстве). Госстрой России, 1998.]

Количество образующегося железобетона, потерявшего потребительские свойства ($M_{\text{отх.жбет}}$), определяется по формуле:

$$M = m * n$$
,

где т – кол-во железобетона, используемого при строительстве, т/год;

n – норматив образования отхода железобетона в кусковой форме, % (n=2%).

Количество железобетонных конструкций, используемых при строительстве, составляет 1090908 m^3 (24 мес.), при $p = 2.4 \text{ т/m}^3 - 261.818 \text{ т.}$

$$M = 261.818 * 0.02 = 5.236 \text{ T}$$

Общее количество отхода лома железобетонных изделий, отходы железобетона в кусковой форме составит: **5,236 т.**

13. Лом и отходы изделий из полипропилена незагрязненные (кроме тары) (43412003515)

Отход образуется при резке полипропиленовых труб.

[Сборник типовых норм потерь материальных ресурсов в строительстве (Дополнение к РДС 82-202-96 Правила разработки и применения нормативов трудноустранимых потерь и отходов в строительстве). Госстрой России, 1998.]

$$M = V * N, T$$

읟

Взам. инв.

Подпись и дата

Инв. №подл

где: V - норма расхода материалов, т;

N - норма трудноустранимых потерь и отходов, % (n=2,5%)

$$M = 1,500 * 0,025 = 0,038 \text{ T}$$

Общее количество отхода лома и отходов изделий из полипропилена незагрязненных (кроме тары) составит: **0,038 т.**

14. Отходы пленки полиэтилена и изделий из нее незагрязненные (43411002295)

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата	

9035.1- ПМООС 3

Лист

Кол-во поддонов с материалом — 1124 шт. Вес полиэтиленовой пленки на один поддон — 0,001 т.

Согласно «Методическим рекомендациям по оценке объема образования отходов производства и потребления» (прил. 9), удельный вес отхода -0.1 т/м³.

Количество отходов: 1124 * 0,0001 = 1,124 т.

Общее количество отхода пленки полиэтилена и изделий из нее незагрязненные составит: **1,124** т.

15. Остатки и огарки стальных сварочных электродов (91910001205)

Согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003г. расчет нормативной массы образования огарков сварочных электродов производится по формуле:

$$Mo\Gamma = K_H x \sum P_{i\ni} x C_{io\Gamma}$$

Где Р_{іэ}-масса израсходованных сварочных электродов і- той марки, т\год;

Сіог норматив образования огарков, доли от массы израсходованных электродов;

Кн - коэффициент, учитывающий неравномерность образования огарков (образование огарков разной длины при работе на объектах);

Cor = 0.08 - для электродов с диаметром стержня 2-3мм

 $K_H = 1, 1 \dots 1, 4$

Q=16,8 – Расход электродов, т

M=16,8*0,08*1,4=1,882 T.

Общее количество отхода остатки и огарки стальных сварочных электродов составит: 1,882 т.

16. Лом и отходы стальные в кусковой форме незагрязненные (46120002215)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество отходов металла рассчитывается по формуле:

 $K = P \cdot n$

ИНВ. №

Взам.

Подпись и дата

где Р – количество используемого металла, т (14 мес.);

n — норматив образования лома стального, % (n = 1 %).

K = 4190,55 * 0,01 = 41,906 T.

Общее количество отхода лом и отходы стальные в кусковой форме незагрязненные составит: **41,906 т.**

17. Лом строительного кирпича незагрязненный (82310101215)

Согласно типовым нормам отходов материалов в процессе строительного производства норма отходов кирпича строительного составляет 1 %.

[Сборник типовых норм потерь материальных ресурсов в строительстве (Дополнение к РДС 82-202-96 Правила разработки и применения нормативов трудноустранимых потерь и отходов в строительстве). Госстрой России, 1998.]

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата	

9035.1- ПМООС 3

Лист

Итого количество боя строительного кирпича составит: 1167 шт * 2,5 кг * 0,01 = 0,029 т. Общее количество отхода лом строительного кирпича незагрязненный составит: 0,029 т.

18. Отходы изолированных проводов и кабелей (48230201525)

Расчёт отходов выполнен на основании «Сборника удельных показателей образования отходов производства и потребления». М. НИЦПУРО. 2003.

Количество образующегося отхода кабеля определяется по формуле:

$$M = m * n$$
,

где т – масса использованного кабеля, т. (24 мес.);

n — норматив образования отходов изолированных проводов и кабелей (n = 2 %).

$$M = 29,000 \cdot 0.02 = 0.580 \text{ T}.$$

Общее количество отхода изолированных проводов и кабелей составит: 0,580 т.

19. Прочая продукция из натуральной древесины, утратившая потребительские свойства, незагрязненная (40419000515)

Норма потерь обрези чистой древесины составляет 3%.

[Сборник типовых норм потерь материальных ресурсов в строительстве (Дополнение к РДС 82-202-96 Правила разработки и применения нормативов трудноустранимых потерь и отходов в строительстве). Госстрой России, 1998.]

Согласно «Методическим рекомендациям по оценке объемов образования отходов производства и потребления» (прил. 9), объемный вес -0.3 т/m^3 .

Итого количество отходов составляет: 236,25 * 0,3 * 0,03 = 2,126 т.

Общее количество отхода прочей продукции из натуральной древесины, утратившей потребительские свойства, незагрязненная составит: **2,126 т.**

20. Грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами (81110001495)

Выемка грунта осуществляется бульдозерами. Разрабатываемый грунт складируется на площадке строительства во временные отвалы и в дальнейшем используется для засыпки пазух котлованов и для вертикальной планировки территории.

Нормативное количество образования грунта определяется по формуле:

$$O_\Gamma = V_\Gamma \times \gamma$$

где Ог – масса образовавшегося грунта при проведении землеройных работ, т;

 V_{Γ} – объем излишнего грунта, м³;

 γ – удельный вес грунта, т/м³.

Нормативное количество отходов грунта, образовавшихся при проведении землеройных работ, не загрязненных опасными веществами, составляет **14212,72** т.

Согласовано			
	Взам. инв. №		
	Подпись и дата		
	лнв. № подл		
	Ē		

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата	